April 2024

The Future of Decentralized Data

Karl Gutwin, Ph.D. Principal Consultant Data Strategy and Ecosystems

bioteam.net

The Grand Vision: Interconnecting Biomedical Data

Human-driven Barriers to Data Access

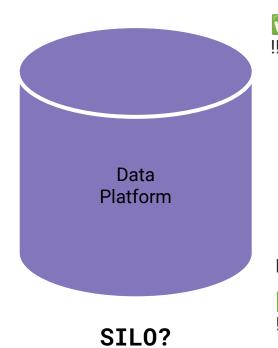
The **data accessibility gap** between the "haves" and the "have nots" is a systemic equity problem

• The "haves" - those who have the time, skill, and resources to wrangle data **2** FAIR can only be achieved by a diverse set of technologies, speaking the same language

 This cannot be one vendor, one approach - science is too diverse

Limitations of typical Data Platforms

Rigid Schema


predictable data model !! inflexible; ETL data loss

Experts Load Data

enforce standards
!! gatekeeping

Code-Heavy Data Operations

✓ use best technologies !! excludes low-code users

Purpose-Built

designed to meet use cases !! reinventing the wheel

Limited Data Ingest Formats

work with known formats !! constant ETL maintenance

Data Catalog

centralized external docs
!! separate meaning from schema

Common Alternatives

File/Object	Store
-------------	-------

holds everything

!! structured data handling needs extra work

NoSQL Database

🚺 highly dynamic

!! schema mutation over time is painful

SaaS Data Workbench

Iots of slick tooling

!! walled garden, only works as long as you keep paying the bill

Open-Source Code Workbench

🔽 do anything with code

!! high skill barrier of entry

What if we could build a Data Platform...

... more flexible than a traditional data platform:

• Dynamic schema, supports any data, with integrated tools for users to manipulate and create derivative datasets

... more interactive than a shared filesystem or cloud drive:

• Data, documentation, and visualizations all in one place

... more open than a commercial vendor's product:

Use existing standards to foster interoperability via federation

The Path to an Interoperable Ecosystem

Current State

Harmonizing scientific data from multiple sources is time consuming, generally *ad hoc*, and the results are difficult to share with others.

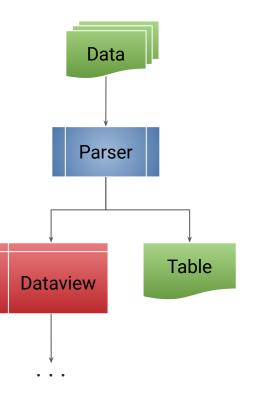
Facilitated Curation: A platform for people to find, browse, share, combine and remix datasets on computable community-derived data dictionaries and CDEs.

Ideal

Exploring and merging datasets often requires writing code or performing complex operations.

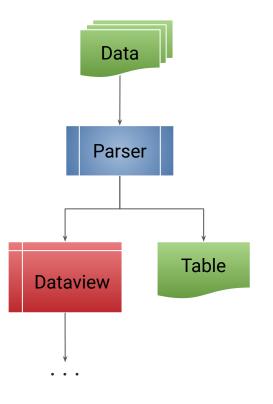
Dynamic Transformation. A "no-code" interface for users to transform data based on specified rules, allowing for datasets from multiple sources to be analyzed without creating unnecessary artifacts.

Data commons systems are purpose-built for specific use cases and have to "own" all the data.


Federation By Design: A federated system model enabling interaction with distributed data managed by others and providing a fabric on which existing data commons will be able to interoperate.

Four Core Principles

Principle 1: Accept all data, transform it live


- Also known as ELT (extract, load, transform)
- Too many problems with "define a schema, transform all data before loading"
 - There is no "one true model" of biomedical data
 - Data models change over time
- Support data from all sources using a plugin-driven interface
- Incorporate a high-performance transformation engine based on SQL
- Allow users to easily create their own transformations and compose them using building blocks developed by the community

Principle 1: Accept all data, transform it live

Approach

- Python flexibility, data science heritage
- Polars high-performance dataframes
- DuckDB in-memory SQL OLAP engine
- **PRQL** pipeline-oriented transformation DSL
- Parquet data caching

Principle 2: Data Elements as metadata

- Current practice is to store column-level metadata in a data catalog, data dictionary, or external documentation
 - Distant from the data, disconnected from transformations
- Data Elements answer the question "what does the data mean?"
 - How it was collected, what values are allowed, what concepts are represented
- Transformations should affect both the data and the data elements
- Common Data Elements reuse as much as possible

\ge ∽	number	5 definitions	1 concept	PDjBiGXjO:000
Name: Age	Data Type: number	ID: PDjBiGXjO	Version: 0000	Sensitivity:
Definitio	ns			
more th alsoKno longDes	edQuestionText: an 24 months o wwnAs: https://c scription: The months (if 24 m	old or months if de.nlm.nih.gov/ umber of years	24 months o api/de/PDjBi (if more that	or younger)? GXjO n 24 months
https://v	ve. National Longit vww.nlsinfo.org ousehold/age		ts/nlsy79-ch	
source: https://v guide/h	National Longit www.nlsinfo.org	/content/cohor	ts/nlsy79-ch	
source: https://v guide/he other: a	National Longit www.nlsinfo.org ousehold/age ge, person, den ible Values	/content/cohor		
source: https://v guide/he other: a	National Longit www.nlsinfo.org ousehold/age ge, person, den	/content/cohor		ildren/topical-
source: https://v guide/he other: a	National Longit www.nlsinfo.org ousehold/age ge, person, den ible Values <i>issible values p</i>	/content/cohor		ildren/topical-

Principle 2: Data Elements as metadata

Approach

- Data Elements integrated from plugins, such as the <u>NIH CDE Repository</u>
- Track column/data element associations, propagate through data transformations
- Automatic data validation based on data element permissible values

Age ~	number	5 definitions	1 concept	PDjBiGXjO:0000
Name:	Data Type:	ID:	Version:	Sensitivity:
Age	number	PDjBiGXjO	0000	

Definitions

preferredQuestionText: What is the person's age (in years if more than 24 months old or months if 24 months or younger)?

alsoKnownAs: https://cde.nlm.nih.gov/api/de/PDjBiGXjO

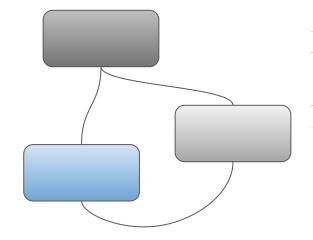
longDescription: The number of years (if more than 24 months old) or months (if 24 months or younger) that the person has been alive.

source: National Longitudinal Survey https://www.nlsinfo.org/content/cohorts/nlsy79-children/topicalguide/household/age

other: age, person, demographics

Permissible Values

Permit null: false

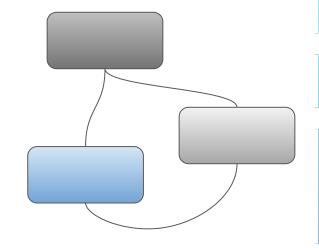

No permissible values provided

Concepts

Name: Origin: NCI Origin ID: Applies to: Thesaurus C25150 dataElement

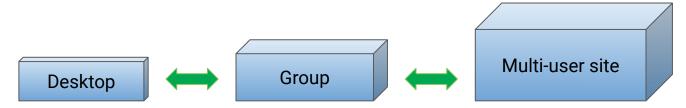
Principle 3: Federation over centralization

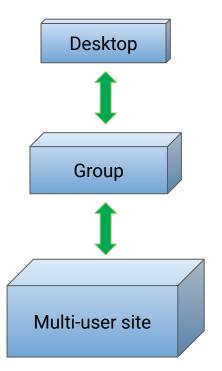
- Science is distributed, and the technology should reflect and support that model
- Allow user communities to maintain their own data, and share it securely with others
- The platform should abstract away the technical details of data movement
 - Links to remote data ought to behave just like local files, from the user's perspective
- Reuse existing open protocols
 - Other implementations of these concepts should be welcomed
- Future vision: Global federated search engine



Principle 3: Federation over centralization

Approach


- Automated data transfer and caching
- Implementation of existing open standard protocols
 - GA4GH Data Connect for tabular data
 - <u>ActivityPub</u> for site-to-site messaging and access requests


Principle 4: One platform, at any scale

 All of the previous principles apply at all scales, whether the user is working on their desktop, using a group server, or a large multi-user deployment

• It should be easier for a curious user to try the platform themselves than a sysadmin should be able to deploy it to the cloud

Principle 4: One platform, at any scale

Approach

- Single Docker container has all necessary dependencies
- Designed for horizontal scalability using load balancing, with multiple supported storage backends
- Can be deployed at scale using cloud-native or Kubernetes orchestration

Empowering Decentralized Data

A New Model for Data Infrastructure

A platform for any data

- The universality of tabular data
- Computable metadata
- Structured data is validated live

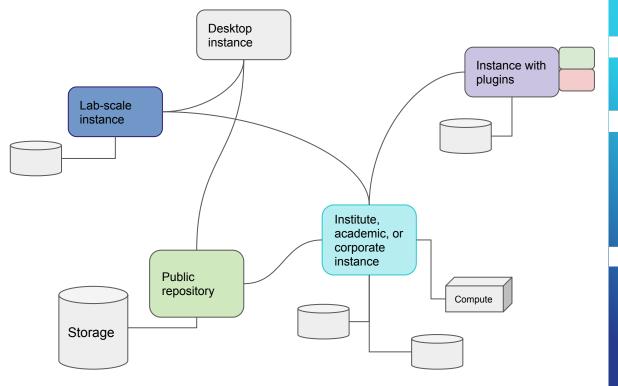
Federated, not siloed

- Independently operated instances agreeing to a lightweight, standards-based set of communications protocols
- One core platform at any scale from desktop to multi-center institution
- Enables search and sharing across labs/institutions/organizations

Expanding the definition of data items

- "Links", to provide access to remote data
- "Dataviews", to enable on-the-fly transformations

Framework for collaboration


- Data dictionaries developed as open-source resources
- Share the data, and the *transformations* that make the data, to make data more reusable

The Grand Vision: Interconnecting Biomedical Data

The Big Idea:

We break down barriers to sharing and interoperability by envisioning an opensource solution that anyone can run, customize to their needs, publish and remix data, with appropriate access controls.

In this way, we contemplate not just a platform, but a true global ecosystem of users and use cases, across any kind of biomedical data.

BioTeam Accelerate Science

Thank You!

bioteam.net