
AWS ParallelCluster:
Tips, Tricks, and Lessons Learned

BioTeam 2022 Webinar Series



Welcome!

Today’s Topics

● Why traditional HPC on AWS?
● Why ParallelCluster?
● Tips, Tricks & Lessons Learned

– Operational Philosophy
– Persistant Essentials
– Node Configuration
– Deployment Considerations
– Post-deployment Acts

● Questions & Comments

Future Related Webinars
● License-aware Schrödinger Integration 

with ParallelCluster
– September 14 2022

● Enabling & Using the Slurm REST API 
with AWS ParallelCluster
– TBD

Acknowledgements
● AWS HPC Team
● AWS ParallelCluster Developers
● BioTeam’s Karl Gutwin & Adam Kraut



Quick Intro

About Me

● Failed scientist turned HPC & research computing 
infrastructure nerd 

● AWS user since EC2 was a private beta

● Reformed Grid Engine bigot

About This Webinar

● Moderated by Adam Kraut!

● Sorry! Not slick or high-level; this is personal

● Promised actionable advice so you are going to get 
the dry and boring details delivered at a fast pace

● All mistakes in this presentation are my own

● Slides are word-heavy because they are often 
passed around after the “live” event

chris@bioteam.net 
Twitter: @chris_dag 

mailto:chris@bioteam.net


BioTeam, Inc.

These next few slides are for folks drawn by our niche technical content 
who have no idea who BioTeam is, how we are built, & what we tend to do



Scientific IT Consulting

Copyright © 2022 BioTeam



Why choose BioTeam

● Mastery of science, data, and technology integration

● Trusted and strategic partners

● Strategic thinkers, skilled at execution

● Holistic approach to solving problems

● Best practices from hands-on experience

● Creative, integrative, leading-edge, 
approachable strategies 

● Vendor and technology neutral

● Highly collaborative teams that integrate with your team

● You hire the whole company to bear on your problems and strategies



BioTeam scientific digital transformation capabilities

     Data Management/Governance

Storage

        Data Science/Informatics

   Data Platforms/Commons

Cloud Architecture

HPC

Networking

SER

SERVICES PRACTICES

SERVICES

S
C
I
E
N
C
E

SERVICES

Digital 
Transformation



Our focus: Building scientific data ecosystems



WHY?
Why do we still need “Traditional HPC” on the cloud? 

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



Why “Traditional HPC” on AWS?

● Because cloud marketing and “evangelists” are lying to you

● In the cloud sales/marketing/evangelism world they pretend that legacy 
use cases and business requirements either do not exist or are simply 
too embarrassing to discuss

● In the rosy world of cloud marketing:

— 100% of our applications, platforms, algorithms, and workflows are going to 
be re-architected and re-written from scratch using cloud-native design 
patterns

— DevOps, Infrastructure-as-Code, & automated deployment is pervasive 
down to the level of individual scientific end-user 

— IT is fully staffed with cloud-aware engineers, support, & automation 
resources with a remit to directly work with scientists



Blunt Truth: “Traditional HPC” is not Going Away

In the data intensive life science informatics realm …
1. We have hundreds, if not thousands, of applications, algorithms, tools, 

and scripts that will NEVER be rewritten for cloud-native patterns.

2. Core tooling often requires or assumes “Files and Folders” view of 
storage - a transition to 100% native object storage will be a slow & 
lengthy process.

3. Scientists who invest time in learning Python & Bash for data science 
can instantly reuse those skills for pipelines & workflows within a 
traditional HPC environment. 

4. Primary user/customer is a SCIENTIST working without significant 
cloud-aware support. Forcing scientists to learn cloud-native 
engineering practices means they are not actually performing the work 
they were recruited to do.



Why AWS ParallelCluster?

● Recreates “traditional HPC” environment on AWS while integrating 
cloud features like auto-scaling, Spot, & rapid reprovisioning

● Slurm becoming de facto standard across most large-scale 
supercomputing facilities spanning government, academia, & industry 

● Easy to transition our code/scripts and workflow scripting
● Easy to transition Slurm admin and usage expertise

● Developed/maintained by AWS; free and open source
● Fantastic developer team

— Actively maintained; new features/enhancements constantly

Note: Alternatives do exist. Schrödinger has an auto-scaling HPC product for comp chem that ships with built in Identity 
& VDI features.  NVidia now owns Bright Cluster Manager and Altair now has PBSPro & Grid Engine -- both offer hybrid 
cloud or cloud-bursting capabilities that ParallelCluster does not yet support.  

https://www.schrodinger.com/
https://www.nvidia.com/en-us/data-center/bright-cluster-manager/
https://www.altair.com/hpc-cloud-applications


Tips, Tricks, & Lessons Learned
Learn from my dumb mistakes.

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



01: Operational Philosophy

● Helps to change your mindset …

● Premise HPC

— Shared large system w/ multiple users, workflows, & application mixes
• Serial, parallel, batch, & interactive jobs
• Large memory vs CPU heavy vs GPU heavy jobs
• Latency sensitive MPI vs. storage obliterating high IO jobs
• “Do you know who I am? GIVE ME PRIORITY (and all the GPUs…)”

— Significant effort required to tune, configure, maintain, support, and 
troubleshoot systems that must handle many diverse concurrent users and 
application mixes

— Hardware mix can only be upgraded, expanded, or altered every few years



01: Operational Philosophy

● The “Aha!” moment … 

— I don’t have to wedge ALL users and workloads onto the 
same system !!!

● Cloud lets me deploy multiple HPC clusters, each tuned for a specific 
application mix, use case, department, or project team

● For long time HPC folks, this is game-changing - especially those of us 
who’ve spent decades trying to configure large shared HPC 
environments to keep the # of angry scientists as low as possible



02: Persistent Essentials 

● Lots of online info talking benefits of “disposable infra” and cloud HPC 
environments that are created/destroyed on-demand

● This works fine at the cloud-native cool kids table:

— “trigger a lambda when new data arrives; pull all 
data/code in from s3://;  run HPC pipeline via service 
account user;  blow it ALL away after writing results 
back to s3:// …”

● … but not in my world

● My HPC users are humans doing science. They need persistent stuff 
that lives independently of any single ParallelCluster HPC environment



02: Persistent Essentials 

Cloud HPC life is 1000x better when I have three persistent things:

1. Identity: A consistent source of truth for usernames, auth, & UID|GID

2. $HOME: A shared file system for user home directories

3. $APPS:  A well organized, shared file system where all of the scientific 
software is centrally installed and maintained. Ideally, versioned and 
under management by something like Environment Modules. 

This stuff needs to EXIST and PERSIST independently so we can plug them 
into our ‘disposable’ or ‘transient’ cloud HPC stacks …

https://modules.readthedocs.io/en/latest/


02: Persistent Essentials 

The solution for IDENTITY is “whatever operationally works for you …” 

● Use native ParallelCluster support for Active Directory LDAP
● Create local user accounts in OS via Ansible triggered by CustomAction
● Configure auth to different LDAP via Ansible triggered by CustomAction
● Copy in /etc/passwd, /etc/shadow and /etc/group from s3  (!)
● Custom AMI image with your weird bespoke stuff baked into the OS

Note: The green methods are the most used by BioTeam



02: Persistent Essentials 

The solution for $HOME and $APPS is “start with AWS EFS as baseline and switch to 
something different when business, scientific, technical, or performance demand requires 
…”  

● AWS EFS is NFSv4 under the hood
● Very easy to set up including automatic backup and lifecycle tiering rules
● Native support in ParallelCluster, it “just works”

Downsides:
● Not fast enough for some use cases; EFS perf tuning or even paying for provisioned 

throughput is an arcane config optimization art that I don’t really understand

● Infinite size of EFS share means unsupervised scientists will quickly add 700 
terabytes of mysterious data with no provenance, management, organization, and 
no guilt about storing the exact same reference genome in 30 different locations. 

Beyond a certain scale, human effort is required to manage data. 



02: Persistent Essentials 

AD LDAP user with $HOME in EFS 
share using managed software 
installed in /efs/sw path

Example #2 showing TWO versions 
and FOUR “flavors” of the NAMD 
molecular dynamics app; 
highlighting value of tools like 
environment modules



Recap 01
Summarize our “lessons learned” so far …

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



Recap 01: Lessons Learned So Far

1. Biggest mental shift for cloud-based HPC is realizing that you don’t 
need to run single massive shared HPC stack tuned to minimize # of 
angry scientists. ParallelCluster makes it reasonable to run many HPC 
clusters, each sized, configured, and tuned for a specific requirement. 

2. Don’t be fooled by documentation or evangelism regarding “everything 
is disposable! Nuke it all and rebuild/redeploy when needed!” 

There are certain core capabilities that should be durable and 
persistent in your environment so you can plug HPC clusters into them: 

 - A consistent method of resolving user identities and authentication
 - Shared filesystem for home folders & centrally installed software 



03: Node Configuration 

● Version 3.2 of ParallelCluster 
when deployed with EFS and 
AD-LDAP integration comes 
as close to “zero touch 
post-deploy” as I’ve seen yet

● That said … we pretty much 
ALWAYS have to touch or 
tweak something in the 
cluster node OS before we 
hand over to users

Note: This is a super unsafe unencrypted 
LDAP config used in a training class. 
DO NOT DO THIS IN PRODUCTION. 



03: Node Configuration 

Even with shared storage and LDAP 
handled by ParallelCluster, I still often 
need to:
1. Install packages

2. Create a login banner

3. Tell environment modules to 
also search the EFS mount for 
managed applications

4. Create a local group to fix the 
“GID not resolved” error when 
AD-LDAP is used

5. Give my LDAP users 
passwordless sudo access



03: Node Configuration 

ParallelCluster has consistently added new features that make node configuration easier. 

● Ancient History:  CfnCluster/Early-ParallelCluster era
— Pull region appropriate AMI ID from documentation; manually launch the 

image; manually apply all needed customizations; re-bundle into new AMI; 
cross fingers and hope cluster will launch without a fatal rollback error

● Not that long ago: ParallelCluster 2.x version era
— ParallelCluster gained the fantastic ability to “install itself” into an AMI 

image you already have built. This was pretty transformative

● Golden Age: ParallelCluster 3.x CustomActions era
— No more custom images! We launch the ‘native’ pcluster OS image and use 

CustomActions to apply whatever config changes we need



03: Node Configuration 

No shame in making/maintaining custom AMI images for pcluster, but …
● Building, testing, and registering new AMI images is a massive time sink

However the biggest real world observable downside was:
● Custom AMI images effectively “pinned” or  “froze” my clients to specific 

versions of ParallelCluster. We could not easily jump to the latest 
ParallelCluster release without a lot of time and work

● End result? Lots of folks still running “old” and “it still works so why bother?” 
clusters lacking the latest features/capabilities seen in the current release 
series 

● And at the rate that ParallelCluster is adding feature enhancements you 
REALLY want a smooth operational way to upgrade or migrate to the latest 
release



03: Node Configuration 

ParallelCluster CustomActions
● OnNodeStart - This  hook 

lets you run a script as root 
right after the node boots up; 
perfect for node configuration

● OnNodeConfigured - This 
hook lets you run a script 
after the node is fully 
configured; Perfect for 
tweaking/adjusting Slurm 
configuration

● Supported inside config blocks 
for the HeadNode and each 
Slurm Partition/Queue so you 
can do different things on 
“compute node” vs “head 
node” and even run different 
scripts against different Slurm 
Partitions

Note: This screenshot is from an internal training 
class where our CustomAction scripts were hosted 
on a web server. In a real world production 
environment you’d likely be downloading scripts 
from an s3:// location secured via IAM EC2 
instance role



My Favorite Node Config Method

ansible-pull from playbooks hosted in AWS CodeCommit repo
(AWS CodeCommit uses git protocol)

ansible-pull -U codecommit::us-west-2://bioteam-nodeconfig simple-playbooks/linux-common/tasks/main.yml  

Magic



Why I Love “ansible-pull -U codecommit” for Config

1. Ansible is super approachable, the 
YAML files are easy to 
read/comprehend even by folks who 
have never seen it before

2. HIGHLY repurposable, which means I 
can use the same method across “all 
Linux on AWS” including:

a. Ec2 Image Builder Pipeline building 
“trusted ec2 images” and distributing 
them across multiple AWS accounts

b. Keeping all my other Linux servers 
and nodes in desired config state

c. AWS ParallelCluster

3. Idempotency means I don’t have to 
rebuild/replace nodes to update them 
to latest config - I just rerun the git pull 
command!



How it Works

1. Create git repo in CodeCommit

2. Put Ansible playbooks in repo

3. Create IAM policy allowing 
access to repo; attach it to your 
EC2 IAM roles

4. Make sure nodes have the 
required packages (easily done 
with CloudInit or Pcluster 
CustomAction scripts)

5. Now bend the node to your will!
 ansible-pull -U codecommit::us-west-2://usw2-sharedServices-imagebuilder-repo \  
 simple-playbooks/linux-nodeconfig-common/tasks/main.yml 



IAM for Ansible Git-Pull from Codecommit

Recommendation

● This is not the only AWS 
permission you will want to be 
assigning your ParallelCluster 
nodes (S3, SSM, KMS, etc.)

● Consider making a consolidated 
IAM policy with a sufficiently 
generic name 
(“scicomp-automation-enablement”) so 
you can add all your special 
permissions into one easily 
assignable IAM policy

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "CodeCommitPullFromNamedRepoOnly",
            "Effect": "Allow",
            "Action": [
                "codecommit:Describe*",
                "codecommit:Get*",
                "codecommit:List*",
                "codecommit:GitPull"
            ],
            "Resource": [
             
"arn:aws:codecommit:us-east-2:290725103381:ansible-playbooks"
            ]
        }
    ]
}

arn:aws:iam::290725103381:policy/bioteam-automation-enablement



ParallelCluster CustomAction Bootstrap Script:



CustomAction bootstrap script for cross 
AWS account codecommit pull

● More common these days to see 
“Shared Services” AWS accounts 
and VPCs

● Pulling a git repo from 
CodeCommit hosted in a 
different AWS account requires 
an extra IAM assume-role step

● Made easy via Ben Kehoe’s 
awesome SSO/credential 
utilities:
— Twitter: @ben11kehoe

— Github: 
https://github.com/benkehoe 

https://twitter.com/ben11kehoe
https://github.com/benkehoe


Closer Look at our 
Ansible Playbooks & Tasks

May skip for time reasons but will leave slides in for reference/review



main.yml - entry point for a playbook

● main.yml breaks out what we want 
to do on each node into ‘tasks’

● By default every task in this 
main.yml file will be executed

● But we can tag the tasks as well so 
that if needed we can ansible-pull 
with a “--tag” argument to ONLY 
run (or rerun) a certain task



tasks/install-packages.yml

● This is where we install OS 
packages we want available

● Ansible built-in package 
module is “OS aware” and 
will use the proper install 
commands (“yum” vs “apt”) 
depending on Linux distro*

— * The only gotcha is 
sometime package names 
differ across Linux variants 
so be prepared to use 
conditional logic in some 
cases



tasks/custom-motd.yml -- template file for custom message

templates/simple-motd.j2 - Ansible uses the Jinja templating engine to dynamically create files 
with highly customized content. In this lame MOTD template example we are just pulling in date, 
time and timezone info from pre-existing ansible_facts 



custom-motd.yml -- Users see this on login



tasks/environment-modules.yml

● This is simple but important. Using ansible “add a line to an existing file” 
module, we can add an EFS file location to the list of places where 
“modules” will look for managed scientific software installations

● Now users who login and type “module avail” will see all the centrally 
installed and managed scientific applications hosted in our EFS share 
that we’ve mounted to our HPC cluster



tasks/ldap-tweaks.yml

● This resolves an annoying error with AD-LDAP integration

● SSSD/AD integration maps all LDAP users to a default group GID

● However this group does not actually exist and is not resolvable by default; 
resulting in an annoying warning error visible to end-users

● We fix this by using Ansible to make a local group using the same GID that 
SSSD mapped to our AD-LDAP users



tasks/bioteam-sudoers.yml

● Sorry InfoSec people! You 
can cover your ears/eyes 
for this section

● Scientists use servers as 
“digital laboratories” not 
static business endpoints

● Scientists should have the 
ability to control/manage 
their “digital lab bench”

● Hence, I have no issue at 
all granting sudo access 
to all my scientific users



Recap 02
Summarize our “lessons learned” so far …

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



Recap 02: Lessons Learned So Far

3. AWS ParallelCluster is rarely “zero touch”. There are often things you will 
want to change or implement on the HPC OS node images

4. Latest ParallelCluster makes it easy to install ParallelCluster into an EC2 
AMI image you’ve already created; minimizing but not entirely removing 
the downsides associated with pcluster version-specific custom images

5. Latest ParallelCluster support for different flavors of CustomActions is 
game-changing. It is easy now to bootstrap your config changes into 
“native” ParallelCluster images and you can run different scripts on 
HeadNode vs ComputeNode or even different Slurm partitions

6. Use whatever CustomActions bootstrap method works for you; we 
showed you our favorite method involving ansible-pull and AWS 
CodeCommit 



04: Deployment Considerations 

Always install ParallelCluster into a dedicated Python VENV
● The “pcluster” script is version specific, you can’t use it to 

manage/control/update any ParallelCluster stack

● If you don’t maintain separate ParallelCluster instances pinned to 
dedicated VENVs you may lose your ability to manage or control “older” 
stacks; keep all your VENVs handy until you don’t need them

● Name your python VENV with the version of ParallelCluster installed 
within it so you can easily switch versions

● Python version matters. ParallelCluster v3.2 dropped support for 
Python 3.6 and earlier — awkward if you are using CentOS 7 to manage 
your HPC fleets!



04: Deployment Considerations 

Do not hoard ParallelCluster config .yaml files on your laptop
● I love deploying HPC from my laptop but …

— Modifying a running ParallelCluster stack requires access to the .yaml 
config file used to launch it

— This is operationally painful if the config file lives on someone’s laptop and 
someone else needs to do something to the HPC stack

● Recommended Option A:  Launch a cheap burstable EC2 node and 
make it your “HPC operations box” shared by all admins; put all your 
VENVs and config files there

● Recommended Option B: Push config files to S3 or use a Git repo and 
make sure it ALWAYS has the latest “live” version



04: Deployment Considerations 

Consider launching ParallelCluster stacks with Admin-level permissions

● This one may be controversial and it’s OK to disagree

● I used to spend a lot of time exhaustively crafting least-privilege IAM 
security policies for “pcluster-deployer” and “pcluster-stack”
— This took time and a lot of trial and error
— The IAM policies became pcluster version specific because each new 

version of ParallelCluster often required a slightly different permission mix

● If you deploy Pcluster v3.x series with Admin-like permissions, then 
ParallelCluster itself will create well scoped IAM roles and policies that 
are cluster-specific. 



04: Deployment Considerations 

Make use of AdditionalIamPolicies
● Very easy to anoint your HPC nodes with additional AWS permissions
● Essential feature both for Ops as well as “getting science done”
● In example below:

— Ec2ReadOnlyAccess used for slurm “mem.sh” script that uses EC2 API calls 
to query instance memory config so it can set proper RealMemory values

— SSMManagedInstanceCore because I love ssm-agent being able to function

— bioteam-automation-enablement - CodeCommit and other permissions



04: Deployment Considerations 

Tag your sh!t
● Tagging resources is an essential 

“cloud hygiene” act since forever

● Easy to do in pcluster .yaml config

● There is no excuse not to use your 
existing Tagging standards and 
policy on ParallelCluster deployments

— You DO have a Tagging policy and 
configured set of Cost Allocation 
Tags, right?



04: Deployment Considerations 

Consider pcluster Monitoring: settings
● { from memory } older pcluster versions 

used to create cloudwatch log groups with 
“never expire” settings -- potentially wasteful 
if you were not aware of this

● Current default is 14 days if you don’t 
specify otherwise

— I choose between 1-day and 14-day retention 
depending on if I consider the HPC cluster to 
be “PROD” or “DEV/TEST

● DeletionPolicy = Retain by default

— I almost always change this because by the 
time I’m deleting an HPC stack, I no longer 
have any interest in the logs



04: Deployment Considerations 

Read the fine print on AD-LDAP Integration
● Today AD-LDAP integration is best 

achieved by using a REAL domain 
controller rather than AWS Managed 
AD

● There is a MASSIVE gotcha with AWS 
Managed AD that makes setting up 
encrypted LDAPS awkward

— Current workaround is “deploy an 
SSL-terminating load balancer 
between your cluster and AWS 
Managed AD”

● Knowing this, I will always push for a 
real Domain Controller when LDAP 
integration is needed Note: This is a super unsafe unencrypted 

LDAP config used in a training class 
because we used AWS Managed AD.  
DO NOT DO THIS IN PRODUCTION. 



Recap 03
Summarize our “lessons learned” so far …

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



Recap 03: Lessons Learned So Far

7. Pin parallelcluster installs to named Python VENVs

8. ParallelCluster config files need to be accessible by all HPC operators

9. Ponder IAM and consider deploying with Admin permissions so pcluster 
can write it’s own tightly scoped IAM roles and policies

10. AdditionalIamPolicies is your friend

11. Tag your sh!t. No excuse

12. Tune Monitoring: section to set proper retention and deletion values

13. Beware of the LDAPS ‘gotcha’ when considering use of Managed AD



05: Post-Deployment 

aka “things I have not automated yet …” 
● Things that I always do on every ParallelCluster deployment

— Set up Accounting so “seff” and “sacct” utilities work

● Things that I do on a case-by-case basis

— Configure Slurm job level memory management and enforcement
— Configure Slurm “application license-aware scheduling”
— Integrate Schrodinger Computational Chemistry suite so that its own internal 

jobcontrol system can submit “license-aware” jobs to Slurm

● Note:
— The ParallelCluster developers are slowly erasing the list of tasks I perform 

post-deploy by pushing out new releases with these features or capabilities now 
baked in

• Example: 
– ParallelCluster 3.2.0 release now has Slurm memory-based scheduling



05: Post-Deployment 

You really want to configure Slurm Accounting & JobCompletionLog
● IT or HPC Ops team may not care but HPC job accounting data is an 

invaluable information source for end-users

● Accounting tells users how their jobs exited and provides other useful 
information and data

● Smarter shops can ingest and report on accounting data to determine if 
their HPC cluster config is optimized and if nodes are achieving high 
utilization (critical for expensive instance types)

● Annoying Note: Prior versions of Slurm allowed simple file-based 
accounting to be set up. The updated version of Slurm shipped with 
ParallelCluster 3.2 removed support for file-based accounting storage

— You are basically forced to set up a mySQL/mariaDB server now



05: Post-Deployment 

Why this is worth doing
● ‘seff’ is a fantastic script that 

uses accounting data to 
report on job level resource 
consumption

● This data is ESSENTIAL if you 
plan to hard enforce memory 
based job scheduling on the 
cluster

● Without functional ‘seff’ and 
‘sacct’ utilities, users have 
very little insight into past job  
data and usage metrics

$ seff 4697

Job ID: 4697
User/Group: /scicomp-ldap-users
State: TIMEOUT (exit code 0)
Cores: 1
CPU Utilized: 00:00:00
CPU Efficiency: 0.00% of 00:01:27 core-walltime
Job Wall-clock time: 00:01:27
Memory Utilized: 101.96 MB
Memory Efficiency: 97.11% of 105.00 MB

This is INVALUABLE data to end-users who need 
to profile and understand the resources their 
jobs and workflow require; you need to have 
working Slurm accounting to use this. 



05: Post-Deployment 

I set up mySQL for ParallelCluster Accounting in different ways

● For heavy HPC shops with lots of work, it makes sense to use AWS RDS 
to set up a mySQL service that can be used by many clusters 
simultaneously 

— One RDS instance can run many databases so you can support multiple 
ParallelCluster environments with a single RDS deployment

● For lighter environments or simpler installs we just drop a mysql server 
on the ParallelCluster login node

● The “right choice” is the one that best works operationally for you



05: Post-Deployment 

Other less-frequent post-deploy activities:

● Set up scripts that poll flexlm license servers and update Slurm in 
support of “application license-aware” job scheduling

● Compile, install and configure slurmrestd daemon to enable the 
Slurm REST API for remote job submission, control, and monitoring 

● Integrate with Open XDMoD for reporting, monitoring, and service 
metrics - open.xdmod.org/10.0/index.html 

● Future: Just got told about pcluster.cloud WebUI stack for managing 
and accessing ParallelCluster 3.x series clusters; looks interesting!

https://slurm.schedmd.com/rest.html
https://open.xdmod.org/10.0/index.html
https://pcluster.cloud


05: Post-Deployment 

One last thing … 
● Slurm Accounting “HowTo” docs often do not mention that in AWS you can’t really 

issue “GRANT ALL …” statements because RDS prohibits users from certain types 
of GRANTs. 

● There are online URLs with database creation command examples that will fail when 
used on AWS RDS … 

● Here are some notes from the last time I made a mySQL RDS database to store 
Slurm accounting info, rather than “GRANT ALL”. I had to be very specific with my 
GRANT commands:

CREATE database slurm_acct_db;

GRANT SELECT,INSERT,UPDATE,DELETE,DROP,ALTER,CREATE,CREATE ROUTINE, 
ALTER ROUTINE on slurm_acct_db.* TO 'slurm'@'%' WITH GRANT OPTION;



Recap 04
Summarize our “lessons learned” so far …

Talk Progress:

 Why traditional HPC on AWS?
 Why ParallelCluster?
 Tips, Tricks, & Lessons Learned

 Operational Philosophy
 Persistant Essentials
 Node Configuration
 Deployment Considerations
 Post-deployment Acts

 Questions & Comments



Recap 04: Lessons Learned So Far

14. Still things we need to do to Slurm “post-deploy” although the 
ParallelCluster dev team is working hard at shrinking this list (thanks!)

15. The most common/valuable post-deploy Slurm task is to set up 
accounting so utilities like ‘seff’ and ‘sacct’ work for your 
end-users. 

16. Simple setup of accounting using files is no longer supported in the 
version of Slurm shipping with ParallelCluster 3.2 — a SQL database now 
seems to be required



end; thanks!

Time for Q&A & Discussion
Slides from this webinar will be available on our website


