
Authorization (AuthZ) Engine
Architecture for Distributed Systems

John Jacquay
Senior Scientific Systems Engineer

What is AuthZ?

● What information or resource(s) does the { subject } have access to?

● Is the { subject } permitted to perform { operation } on this { resource }?

Authorization Answers
Questions Like:

Physical Realm AuthZ

● Mailboxes!

— Key & lock is AuthN

— Boxes and rear door as AuthZ

● A house with no AuthZ

● What about data systems?

Why do we care about AuthZ in data systems?

● In the physical realm, authorization is well understood

● Ensures: confidentiality, integrity, and availability of

resources

● Protects resources

— Reduce impact of bad actors

— Can protect PHI data or EMRs

● Create chains of trust

● Exert control over systems

Why Do I Care? Because Data == Power

Data ->

Knowledge ->

Patterns / Trends ->

Prediction ->

Control ->

Influence & Power

Intelligence

Intellegence in Climate: Hot or Not?

"It's cold outside today,
the climate isn't getting
warmer"

"It's cold outside today,
however, the trends in
data point to a warmer
climate"

Disconnected
Data Points

Connected
Data Points

Intelligence In Warfare: Victory or Defeat?

Intelligence In Therapeutics: Profit or Loss?

Escitalopram N=29
10mg / 20mg / every day

QIDS-SR-16 score: -6.0 +/- 1.0

Psilocybin N=30
25mg / every 3 weeks

 QIDS-SR-16 score: -8.0 +/- 1.0

WHO WOULD WIN?

(2021) Trial of Psilocybin versus Escitalopram for Depression - .N Engl J Med 2021; 384:1402-1411
https://www.nejm.org/doi/full/10.1056/nejmoa2032994

https://www.nejm.org/doi/full/10.1056/nejmoa2032994

History of AuthZ Strategies

● Club Bouncer: Bruce

● Unix: File/directory permission bits

● ACL: Access Control List

● RBAC: Role-Based Access Control

● ABAC (PBAC): Attribute-Based Access Control

● RAdAC: Risk Adaptive-Based Access Control

Simple,
Less Expressive,

Less Sophisticated

Complex,
More Expressive,

More Sophisticated

Other Access Control Mental Models

● MAC - Mandatory Access Control

— Centrally managed

— Permissions governed by identity + object tags (sensitivity)

— e.g. Military and intelligence community governance

● DAC - Discretionary Access Control

— Decentralizes security decisions to resource owners

— Permissions governed by identity

— e.g. Unix permissions, ACLs, etc…

History of AuthZ Strategies: ACL

● ACL: Access Control List

● More granular and flexible

control— versus linux file mode bits

History of AuthZ Strategies: RBAC

RBAC:
Role-Based Access Control

Subjects ->
Roles ->
Resource Permissions

History of AuthZ Strategies: ABAC (PBAC)

ABAC (PBAC):
Attribute-Based Access Control

History of AuthZ Strategies: RAdAC

RAdAC: Risk Adaptive-Based Access Control

- Examples:
- To gain access to the conference, you must have a negative COVID test within the last 24

hours

- You must not have visited a country with a breakout of virus x within the last 5 years

- You must fly on an airline that meets our constantly changing requirements

- Difference from ABAC? Takes risk assessments to the extreme
- Subject, resource, and environmental variables as knowledge graph, even utilizing external

data sources

- Good place for application of AI/ML models that learn risks

History of AuthZ Architecture

Ad Hoc -> Shared Libraries -> Network Service

Architecture: Ad-Hoc

● Any AuthZ strategy

● Do whatever you want!
● Tightly coupled with application

code and logic

● Service-specific

— Not applicable to other services

Architecture: Shared Library

Architecture: Network Service

Architecture: Hybrid?

+ = ?

Common Problems in AuthZ Systems

● Not able to express governance at a level of granularity required

● Not able to fully express required logic and rules for access

● Slow || Doesn't scale

● Not readily interoperable

Distributed AuthZ Engine Proposal

M S C S C D

John's Tenets & Principles of a Good One™

Just Remember:

Principles & Tenets of a Good, Distributed,
AuthZ Engine

● Multimodal: Orchestrate AuthZ governance for multiple services

● Scalable

● Cryptographically trustable, correct, and consistent

● Supports advanced logic and capabilities

● Common syntax and vocabulary to define governance rules

● Decoupled and modular, yet connected with mutually understood
logic

Multimodal: AuthZ Governance for
Many Services

● Protects many types of

resources from various services

● AuthZ engine runs as a

decoupled network microservice

● Implementation should be

generic and polymorphic

● Easily add or remove a service

Scalable

● Able to serve a high volume of requests and rules

● Implies denormalized data at some point

● Informs the architecture of the infrastructure

Cryptographically Trustable, Correct,
and Consistent

● Signed claims to reduce required

communication

— JWT

— Why? No need for client to ask multiple

times

● TLS to ensure authentication, integrity,

and privacy

Supports Advanced Capabilities

● ABAC or RAdAC level logic complexity

● Permissions for the data are determined by the data itself, connections
to external data, or connections to the subject

— and the relationships within resource data

Common Syntax and Lexicon to
Define Governance Rules

● Declarative, not imperative

— YAML or JSON

— Custom DSL - Ruby would be great for this

— Better for developing GUIs and for use by non-coders

● Common logic and behavior well abstracted and
reusable
— Use them as to not reinvent the wheel or produce Wet markup or code

Decoupled and Modular, yet Connected
with Mutually Understood Logic

● Boolean responses versus more nuanced responses and

policy— The annoying subordinate problem

● Merging of shared library and network service
architectures

+ = ?

Hybrid: Network service w/ shared libraries

Protected resources and business
logic permissions/policy shared and
understood

The Annoying Subordinate Problem

while (true) {

 prompt("Can I have a cookie?")

}

while (true) {

 prompt("Can I put this expense
on my report?")

}

The Annoying Subordinate Problem

prompt("Can I have a cookie?")

// yes, but it must be after you've eaten
your dinner and it must be an oatmeal
raisin cookie

prompt("Can I put this expense on my report?")

// Please stop asking me. You're using all of my
time and energy to answer these questions.
Please refer to the employee handbook for our
policy on approved expenses

Empower the requestor to make decisions using a well defined policy.
The requestor must be trusted to adhere to the policy.

Hybrid: Network Service with Shared Libraries

Protected resources and business
logic permissions/policy shared and
understood

Players in the Game

● Google Zanzibar

— https://github.com/ory/keto

— https://github.com/authzed/spicedb

— https://github.com/authorizer-tech/access-controller

● Cloud provider IAM

● Gen3's Arborist

● BioTeam!

https://github.com/ory/keto
https://github.com/authzed/spicedb
https://github.com/authorizer-tech/access-controller

Underlying Rule/Claim Transport Formats

XACML

JWT

PASETO

Open Information and Open Code

John believes the democratization of information and code:
Open

Accessible

With Great Power, Comes Great Responsibility

● Responsibility is bidirectional:

between the actors, and

governance

● AuthZ shouldn't be used to restrict

and oppress, should be used to

protect

Zero Sum Game

The End

Thanks For Listening!

