Commercial Clouds for Bioinformatics

Beyond The Genome Oct 11-13 2010, Harvard Medical School

Hi Kaitlyn!

- Fulfilling my "Uncle's Duty" to embarrass a niece who is home from school today
- World Arthritis Day Oct 12
- <u>http://www.worldarthritisday.org/</u>

Who am I?

- I'm from the BioTeam
 - Independent consulting shop
 - Staffed by scientists forced to learn IT to get our own research done
- Found a fun business niche
 - Bridging the "gap" between science, IT & high performance computing
- This matters today because ...
 - We've been doing production informatics work on Amazon AWS since 2007
 - Can speak from multiple AWS perspectives (Customer, Developer, Integrator)

Scene from ancient history in a cloud-enabled world...

Why I drank the Kool-Aide

- Laziness
- Beauty
- Agility
- Money

AWS is not the real reason I often visit Seattle, shhhhhh!

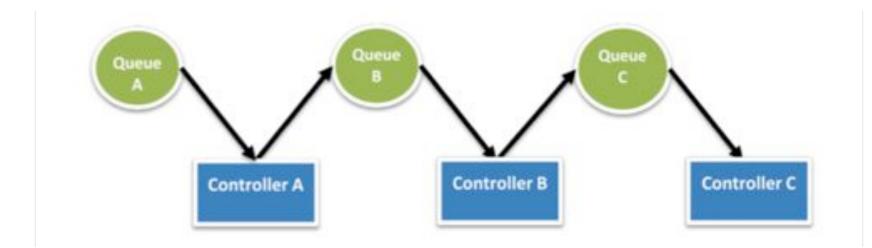
Laziness

- Larry Wall's 1st Great Virtue:
 - "... the quality that makes you go to great effort to reduce overall energy expenditure. It makes you write labor-saving programs that other people will find useful..."
- Scriptable IT Infrastructures are the latest boon for the perennially lazy (like myself)



Note subtle Amazon product plug above ...

Beauty


- Call me a nerd but this stuff is amazing:
 - 1. "Scriptable Datacenter(s)"
 - 2. Orchestrating complex systems & workflows with a few lines of code
 - 3. Infrastructure managed like source code

Can you believe that the Broad Institute @ MIT let me into their telco closets & machine rooms?

Agility

Money

- If a cloud talk occurs without mention of \$
 - ... did it actually happen?

Greetings from Amazon Web Services,

This e-mail confirms that your latest billing statement is available on the AWS web site. Your account will be charged the following:

Total: \$101.68

Please see the Account Activity area of the AWS web site for detailed account information:

http://aws-portal.amazon.com/gp/aws/developer /account/index.html?action-activity-summary

"Scriptable Infrastructure" is a BIG DEAL

This single command will start a 5GB managed MySQL database in the Amazon cloud for \$0.11/hour. The database is *automatically* patched, managed and backed up. Planned enhancements include auto-scaling & snapshots.

It's ALL scriptable ...

- Servers
- Storage
- Operating System(s)
- Network

- Provisioning
- Management
- Monitoring & Scaling
- Accounting

THIS is why we are using commercial clouds for bioinformatics! The pervasive automation available on the cloud has yet to spread far into our own datacenters.

Not hype. Real.

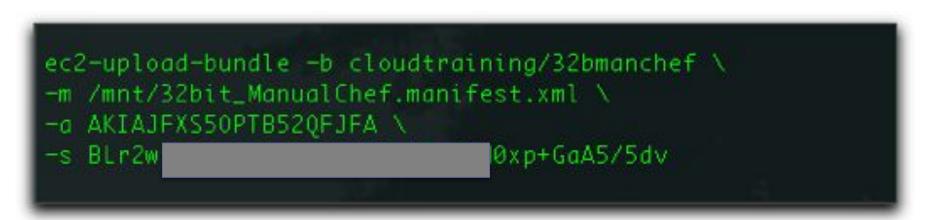
- Every facet of our IT infrastructure can now be automated and remotely controlled via simple scripts and API calls
- Benefits go way above and beyond simple IT Operations work, server "lights out management" features and what local VM systems provide
- Nirvana for lazy nerds like myself
 - Concentrate on getting my work done, not babysitting my datacenter racks

id 😌				7:10 AM			67
• 16 a			Ctri	AT Esc Teb	East II		
Tasks: Cpu(s)	102 tot	al, 1 us, 4.0	running, 10 & sy, 0.0%	1 sleeping, ni, 96.0% i	ge: 0.10, 0.16, 0 stopped, d, 0.0% wa, 0 08k free, 41 08k free, 1984	0 zombie .0% hi. 0.0%	si
	USER	PR NI	VIRT RES	SHR S SCPU		COMMAND	
20252	dag	16 0	6172 1140				
	root	16 0	4772 640				
	root	34 19	0 0			ksoftirqd/0	
	root	5 -10	0 0			events/0	
	root	5 -10	0 0			khelper	
	root	7 -10	0 0			kthread	
	root	13 -10	0 0			kacpid	
	root	5 -10	0 0			kblockd/0	
	root	15 0					
	root	20 0				pdflush	
	root	15 0 16 0				pdflush kswapd0	
Q ¹¹³ 259	root root root root	10 27 -10 24 19 0	R 8 8	0 5 0.0	0.0 0:00.00	aic/0 P kseriod P scsi.ch.0	•
15341	root	15 0		0 5 0.0		k journald	
1228 A	root root S	6 D10	۴ °	G S A	0.0 000,00	Kauditd	elum
¢	z	×	c V	в	NM	2	
	.7123					.7123	6

So easy an Ipad can control it.

Scriptable Infrastructure

- For the first time some of our IT infrastructure might be 100% virtual and entirely controllable via scripts and APIs
- It's not rocket science
- Anyone can drive this stuff
 - Especially motivated researchers
 - ... and this is what is driving informatics onto cloud platforms


Scripted Infrastructure – Creating AMI Bundles

BO

Scripted Infrastructure – Upload bundle to S3 bucket

BORI

Scripted Infrastructure – Register & receive new AMI ID

BORING.

Beauty

- "Scriptable Infrastructure" is just the baseline
 - The cool stuff happens when we build on top of these capabilities
- AWS enables us to **orchestrate** vast arrays of complex systems, pipelines, workflows & applications
 - Without leaving the hammock
- Orchestrated systems working in concert are a beautiful thing.

Money

For anyone seriously looking at IaaS Cloud Platforms

- Can't escape it
- Critical to have a solid understanding of the financial issues
- Viewed from many different angles:
 - **Save** money & increase efficiency
 - *Convert* CapEx to OpEx
 - **Enhance** existing capability (elasticity, agility)
 - Enable new capabilities

Why Commercial Clouds

Why Commercial?

- I don't care where you work
- Nobody in this room can match the internet-scale operators with respect to:
 - Scale
 - Engineering Resources
 - Rate of change

Scale

- Can you build datacenters all over the world with PUE values getting closer and closer to 1.0?
- Are your datacenters chiller-less because you can shed and route load all over the globe?
- Can you have one employee per {XX,XXX} servers?
- Do you have exabytes of spinning disk? Operating 500K servers? 1M cores?
- How much leverage do you have with your server vendor over hardware component efficiency?

Yahoo's new "Chicken Coop" datacenter design

Scale

- Primary benefit of IaaS platforms is economic
 - At massive scale, commercial providers can sell robustly engineered services to us cheaper than we can afford to do it ourselves**
 - While still earning healthy profit margins...
- This is why trends favor the commercial providers

** If we are honest about the true cost of delivering IT services to our customers

Engineering Resources

- Google, MS, Amazon, etc. all have long experience running robust & resilient services in an incredibly hostile networking environment
- All of them can also afford to hire dedicated teams of smart people that do nothing but chase down 1% efficiency gains wherever they might be found
- Great example & resource, James Hamilton's blog:

<u>http://perspectives.mvdirona.com/</u>

Rate of Change

- Using Amazon Web Services as example ...
- The rate at which new services are rolled out and existing services are improved is insane
- Extremely difficult to match
- Basically means everyone else plays catch-up
 - Can your "private cloud" match this?

- Dec 2009
 - Amazon VPC launch
 - AWS Spot Instance launch
 - Windows Server 2008, SQL Server 2008 support
 - AWS Import/Export launch
 - US-West AWS region launch

- Feb 2010
 - SimpleDB consistency enhancements
 - Reserved Instances (Windows)
 - m2.xlarge EC2 instance type
 - AWS Consolidated Billing
 - S3 Object Versioning

- March 2010
 - S3 Import/Export
 - Raw drive support
 - S3 Versioning
 - Combined bandwidth pricing
 - Reverse DNS for elastic IPs

- April 2010
 - SNS Service beta
 - RDS Europe launch
 - Singapore AWS Region w/ 2 availability zones launched

- May 2010
 - RDS Multi-AZ Deployment
 - S3 Reduced Redundancy Storage (RRS) launch
 - RDS support in AWS Console

- June 2010
 - Elastic Map Reduce Updates
 - S3 Import/Export API
 - CloudFront HTTPS support
 - S3 support in AWS Console
 - CloudWatch metrics for EBS volumes
 - SSL support for RDS

- July2010
 - SQS Enhancements
 - 100K req/month for free; Configurable message size & retention period
 - More RDS integration into AWS Console
 - S3 per-bucket access policies!
 - cc1.4xlarge instance types!
 - VPC access control & config generators
 - S3 RRS support in AWS Console
 - More S3 SNS Integration
 - S3 Buckets can now send messages to SNS topics
 - Enhanced CloudFront log data
 - Support for custom Linux kernels on EC2
 - Penetration Testing Policy & Resource

- August 2010
 - RDS moves to Mysql 5.1.49 w/ InnoDB plugin
 - RDS Reserved Instance Launch

- September 2010
 - EC2 Price Reduction
 - VPC support in AWS Console
 - EC2 Micro-instance Launch
 - S3 Import/Export support for 8TB storage devices
 - Amazon Linux AMI Launch
 - EC2 "bring your own keypair" support
 - EC2 idempotent instance creation
 - EC2 Resource Tags
 - EC2 describe-instances filters

- October 2010
 - RDS price reduction & read replicas
 - SNS integrated with AWS management console

Bioinformatics on the cloud

Heard this before?

Problems in mapping informatics to the cloud:

- Architecture
 - IaaS platforms not built for our HPC use cases

Performance

"Virtual everything" comes at a price

• Data

- Data movement still a fantastic pain
- Still difficult to make storage "go fast" on cloud
- Networks, Networking & Message Passing
 - Still awkward

Architecture Issues

Complaint

- IaaS platforms built for massive internet scale operation. Heavily biased towards resilient, highly distributed & loosely connected services
- We need fast, tightly coupled systems and will happily trade some reliability to get this ...

• Status in Late 2010

- Getting better
- AWS "compute cluster" instances are a huge step forward
- The market is clearly listening to HPC audience

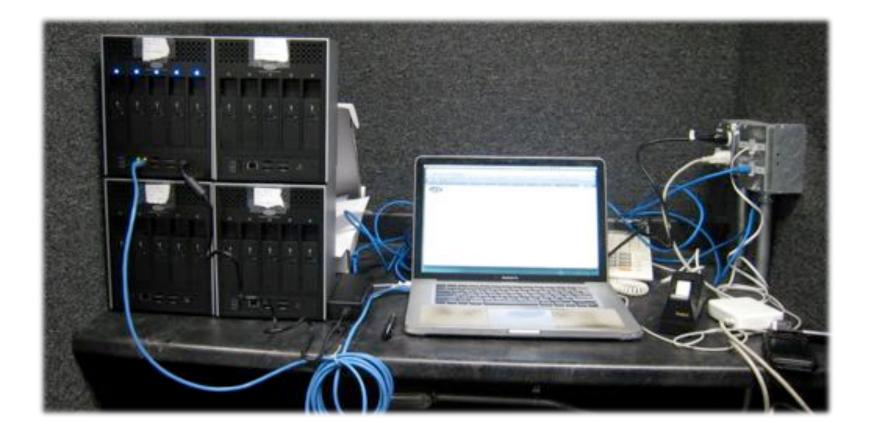
Performance Issues

Complaint

- Multi-tenant virtual platform causes performance hit; cloud performance is variable & hard to instrument
- Status Late 2010:
 - IaaS platforms slowly getting better
 - WE are getting better much faster!
 - Emerging body of life-science cloud best practices is growing rapidly
 - Still finding the benefits outweigh the negatives

Data Issues

- Complaint
 - Data movement still #1 technical challenge
 - Harder problem than it initially appears
- Status Late 2010:
 - Incremental improvements seen w/ best practices for physical & network-based movement
 - Hopeful for 2011:
 - Expansion of peering options with cloud providers
 - Cloud providers joining high speed research networks



Picture Tour!

Physical data movement in the real world ...

Physical Data Transfer Station -1

Physical Data Transfer Station - 2

Physical Data Transfer Station - 3

SATA Toasters!

Physical storage of @ scale data movement materials

Physical storage example - 2

Network Issues

Complaint

- Still nasty to run MPI or latency sensitive codes
- Subnet issues & fan-out of EC2 servers
- Everybody still rolling their own software VPN overlays
- Status Late 2010:
 - VPC and Elastic IP far more usable now
 - Hadoop-friendly Bioinformatics apps gaining steam
 - cc1.4xlarge instance types can help
 - Grouped for close network topology
 - Full bisectional (and not oversubscribed) 10GigE

Bioinformatics on IaaS as of late 2010 ...

Late 2010: Status Update

- Fast becoming mainstream & accepted
 - Just about everyone is experimenting/trialing
 Identifying the obstacles is not hard
- We are well past the initial learning curves
 ... wow did I do some dumb stuff back in '07 ...
- Handling "legacy" workflows is easier than ever
 MIT Starcluster, AWS compute cluster instances

Late 2010: Status Update, cont.

- Easier and easier to run apps in a 'cloudy' way
 - Reference architectures & best practices emerging
 - Elastic Map Reduce, CycleComputing, RightScale
- I personally believe that commercial cloud platforms currently hold more promise than internal/private clouds
 - Cost, complexity, feature & economic benefits less clear except for edge/niche cases
 - Still hard to uncover the nuggets of truth from the immense piles of marketing BS being shoveled our way

end;

- Questions?
- Comments/feedback welcome;
- Watch <u>http://blog.bioteam.net</u> to see our cloud efforts unfold

<chris@Bioteam.net>

Shameless Plug: BioTeam AWS Cloud Training <u>http://healthtech.com/cloud</u> Boston: Nov 1-2, 2010 San Fran: Feb 21-22, 2011

