
IzPack Documentation

Foreword

This documentation is a collective work that received many inputs over the years from
many people, notably Julien Ponge, Elmar Grom, Fabrice Mirabile, Tino Schwarze, Klaus
Bartz and many more.

We tried to keep it as up-to-date as possible despite a few source format changes and
many times where we did not check that new features were properly documented.

If you believe that some portions could be enhanced, fixed, or if you find that some
features are not properly documented, feel-free to help us!

Contents

Foreword 1

Introduction 6
Welcome to IzPack ! . 6
The Features . 7
The Development . 8
3rd party code used in IzPack . 8

Getting started 9
Overview . 9
Installation of IzPack . 9

On Windows . 9
On UNIX/Linux . 10

First Compilation . 12
How to develop and debug IzPack using Eclipse 13
The IzPack architecture . 15

The compilation system . 15
How an installer works . 16
The different kinds of installers . 17
Installers for older vm versions . 18

Writing Installation XML Files 18
What You Need . 18

1

Your editor . 18
Writing XML . 19

Variable Substitution . 20
The Built-In Variables . 20
Environment Variables . 21
Dynamic Variables . 21
Parse Types . 21
The IzPack Elements . 22

The Root Element <installation> 22
The Information Element <info> . 22
The Packaging Element <packaging> 24
The Variables Element <variables> 25
The dynamic Variables Element <dynamicvariables> 25
The Conditions Element <conditions> 26
The Installer Requirements Element <installerrequirements> . . 28
The GUI Preferences Element <guiprefs> 28
The Localization Element <locale> 30
The Resources Element <resources> 31
The Panels Element <panels> . 32
The Packs Element <packs> . 32
Internationalization of the PacksPanel 33
<description> - pack description 33
<depends> - pack dependencies . 33
<os> - OS restrictions . 34
<updatecheck> . 34
<file> - add files or directories . 34
<additionaldata> . 35
<singlefile> - add a single file . 35
<fileset>: add a fileset . 35
<parsable> - parse a file after installation 37
<executable> - mark file executable or execute it 37
<os> - make a file OS-dependent . 38
The Native Element <native> . 39
<os> - make a library OS-dependent 39
The Jar Merging Element <jar> . 39

XInclude-style constructs . 40
The xfallback element . 40
The xfragment element . 41

The Available Panels 42
HelloPanel . 42
CheckedHelloPanel . 42
InfoPanel and HTMLInfoPanel . 42
LicencePanel and HTMLLicencePanel . 43

2

PacksPanel . 43
ImgPacksPanel . 43
TreePacksPanel . 43
TargetPanel . 44
DefaultTargetPanel . 44
InstallPanel . 45
XInfoPanel . 45
FinishPanel . 45
SimpleFinishPanel . 45
ShortcutPanel . 45
UserInputPanel . 45
CompilePanel . 45
ProcessPanel . 47

<executeclass> - Execute Java Classes 48
<executeForPack> - Only execute the job for certain packs 48
<logfiledir> - Output of the processPanel saved to a log 49

JDKPathPanel . 49
SelectPrinterPanel . 50
DataCheckPanel . 50
SummaryPanel . 50
InstallationGroupPanel . 51
UserPathPanel . 52

Advanced features 53
Apache Ant integration . 53
Embedding the installation file using a config element 54
System properties as variables . 55
Automated Installers . 55
Picture on the Language Selection Dialog 55
Picture in the installer . 55
Modifying the GUI . 55

Modifying Language Selection Dialog 56
Modifying IzPack Panels . 56
Using a Separated Heading Panel . 58
Alternative Cancel Dialog . 64

Logging the Installation . 65
Web Installers . 66
More Internationalization . 66

Special resources . 66
Packs . 67

Desktop Shortcuts 67
Defining Shortcuts . 67

Introduction . 67

3

What to Add to the Installer . 68
Why Native Code to do the Job on Windows? 69
The Shortcut Specification . 70
Shortcut Attributes . 72
Unix specific shortcut attributes . 74
Selective Creation of Shortcuts . 74
Localizing shortcuts . 75
DesktopShortcutCheckboxEnabled Builtin Variable 75
Summary . 76
Shortcut Tips . 76

The Desktop . 77
Icons . 77
Targets . 79

Command Line . 80
Trouble Shooting . 80

Problems You Can Solve . 81
Problems That Have No Solution (yet) 82

A sample shortcut specification file for Unix 82

Creating Your Own Panels 84
How to get started . 84
Next Steps . 85
Access to the Variable Substitution System 85
Controlling Flow . 85
Reading XML . 86
Supporting Classes . 86
Panels that are not visible . 86
A word about building IzPack . 87
The IzPanel Class . 87
The Internationalization of custom panels 88

User Input 89
The Basic XML Structure . 90
Concepts and XML Elements Common to All Fields 91
Internationalization . 92
Panel Title . 94
Static Text . 94
Visual Separation . 94
Text Input . 95
Radio Buttons . 95
Combo Box . 96
Check Box . 96
Password Field . 97
File Field . 98

4

Directory Field . 99
Rule Input . 99
Layout and Input Rules . 99
Setting Field Content . 102
The Output Format . 102
Validating Field Content . 103

NotEmptyValidator . 103
RegularExpressionValidator . 103
PasswordEqualityValidator . 104
PasswordKeystoreValidator . 105
Creation Your Own Custom Validator 105

Processing the Field Content . 106
Summary Example . 106
Search . 106
Specification . 107
Example . 107

Custom Actions 107
Overview . 107
How It Works . 108
Custom Action Types . 109

Custom Actions At Packaging . 109
Custom Actions At Installing Time 110
Custom Actions At Uninstalling Time 111

Package Path . 111
Native Libraries for Uninstallation . 112
What You Have To Do . 112
Custom Actions at Packaging (CompilerListener) 112
Custom Actions at Installation Time (InstallerListener) 113
Custom Actions at Uninstallation Time (UninstallerListener) 113
Example . 113
Ant Actions (InstallerListener and UninstallerListener) 114
The Basic XML Struture . 115

<property>: define a property . 116
<propertyfile>: define properties in a file 116
<target>: target to call at installation 116
<uninstall_target>: target to call on uninstallation 116

Registry access (InstallerListener and UninstallerListener) 117
The Basic XML Struture . 118

<key>: define a key . 119
<value>: define a value . 119

Extended Uninstall Key . 120
Uninstall Behavior . 121
Examples . 122

5

Summary Logger (InstallerListener) . 122

IzPack utilities 123
Windows executable wrapper (izpack2exe) 123

Description . 123
Requirements . 124
Usage . 124

Mac OS X Application bundle wrapper (izpack2app) 124
Description . 124
Requirements . 125
Usage . 125

Apache License, Version 2.0 125
Overview . 125
License . 125

Documentation license 130

CookBooks 130
1. How To create an ODBC connection with IzPack (by Fabrice Mirabile) . 130

a. Problem . 130
b. Solution . 130
c. Discussion . 131

2. Work around for pack and process dependence And Execution of Java
Classes that runs SQL/PLSQL . 133

a. Problem . 133
b. Solution . 133
c .Discussion . 134

Sample Install Definition 146

Sample userInputSpec.xml 150

Introduction

Welcome to IzPack !

IzPack is a tool that will help you to solve your software installation problems. It is a
JavaTM based software installer builder that will run on any operating system coming
with a Java Virtual Machine (JVM) that is compliant with the Sun JVM 1.5 or higher.
Its design is very modular and you will be able to choose how you want your installer
to look and you will also be able to customize it using a very simple Application Pro-
gramming Interface (API). Although IzPack is essentially a JavaTM only application
(it can run on virtually any operating system), it can interact in a clean way with the
underlying operating system. Native code can interact with it on a specific platform

6

without disturbing the operation on incompatible operating systems. For instance, you
can develop Unix-specific code that will be silent if run on Windows. To put it in a
nutshell, whereas most of the other JavaTM installers force you to go their way, IzPack
will let you go your way. Some respectable companies have been using it in order to
produce customized installers for their very specific needs.

“So, if it’s so good, how much is it ?” : well, you can get it for free. BUT IzPack is
not a freeware. It’s not free as in “free beer” but “free as in free speech”. So it’s neither
freeware nor public domain. It is software covered by the Apache Software License 2.0.
You have access to the IzPack source code and you can modify it to make it suit your
needs.

You are not required to publish your modifications per the terms of the Apache
Software License. However if you have made general-purpose changes, please consider
contributing them back as it will benefit to the larger IzPack community. Another
benefit of contributing back your changes is that you won’t have to maintain your own
patches and apply them back whenever we publish a new version of the software...

To learn more about the Apache Software License 2.0, visit http://www.apache.org/licenses/LICENSE-
2.0.html

The Features

IzPack uses XML files to describe installations. When you make an installer, you have a
choice of panels. You can see panels as a kind of plugin that composes the installer. For
instance, a panel can choose the installation path, the packs to install, prompt the user
for a license agreement and so on. This approach is very modular. You can also create
your own panels if you have specific needs. In some cases you even have a choice from
multiple panel versions for the same task. You can also choose the order in which panels
appear during the installation process. IzPack can be used in a number of different ways:

• by writing the XML installation file “by hand” and compiling it with the com-
mand line compiler

• by invoking the compiler from the great Apache Ant tool (see http://ant.apache.org/)
as IzPack can be used as a task for Ant

Here is a brief (and certainly incomplete !) list of the main IzPack features :

• XML based installation files

• easy internationalization using XML files (10 translations are already available)

• Ant integration, command-line compiler

• easy customization with the panels and a rich API (even an XML parser is
included !)

• powerful variable substitution system that you can use to customize scripts and
more generally any text-based file

7

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://ant.apache.org/

• powerful condition system that can be used to conditionally show panels, user
input fields and execute files conditionally

• different kinds of installers (standard, web-based, multi-volume, ...)

• launching of external executables during the installation process and Unix exe-
cutable flag support (useful for the scripts for instance)

• layout of the installation files in packs (some can be optional)

• native code integration facilities

• jar files nesting support

• ... more things to discover and create !.

The Development

I started writing IzPack in April 2001 and many people have helped me improving it
since. i prefer not to mention them here as i would for sure forget some of them, so please
check the file named Thanks.txt which i try to get as up-to-date as possible in order to
mention everyone who helped me. As far as i’m concerned, i’m a french student and i
rather see this as a fun activity in my free time where i can learn a lot of great things.
The contributors to the project are both individuals and companies. Help can take any
form :

• translations

• new features and various fixes

• bug fixes

• writing manuals

• ... anything else you like :-)

The official IzPack homepage is located at http://izpack.org/. The IzPack developer
services are generously hosted by Codehaus at http://izpack.codehaus.org/. The project
is grateful to the BerliOS community for havinh hosted the services in the past.

3rd party code used in IzPack

IzPack uses several 3rd party libraries and i would like to mention them in respect for
their respective authors work :

• NanoXML by Marc De Scheemaecker: the XML parser used inside IzPack and
released under a zlib/png-style license - see http://nanoxml.sourceforge.net/

• Kunststoff Look and Feel by Incors Gmbh: a SwingTM Look and Feel that can be
used for installers. Released under the LGPL license - see http://www.incors.org/

• Tango Icons: icons from the Tango project at http://tango.freedesktop.org/

• Some Apache Jakarta classes and libraries: released under the Apache License

8

http://izpack.org/
http://izpack.codehaus.org/
http://nanoxml.sourceforge.net/
http://www.incors.org/
http://tango.freedesktop.org/

• Metouia Look and Feel by Taoufik Romdhane: released under the LGPL license
- see http://mlf.sf.net/

• Liquid Look and Feel by Miroslav Lazarevic: released under the LGPL license
- see liquidlnf.sf.net/

• JGoodies Looks by Karsten Lentzsch: released under a BSD-style license - see
http://looks.dev.java.net/

• Nimbus look and feel by Sun Microsystems under a LGPL license - see https://nimbus.dev.java.net/

So, now let’s dive into understanding how IzPack works. You’ll be surprised to see
how powerful and simple it can be :-)

Getting started

Overview

To begin with, you should know how IzPack is organized if you want to use it. Let’s go
into the directory where you have installed IzPack on your machine. There are 3 text
files and a set of directories. The most important for the moment are bin/ doc/ sample/.
If you are reading this, you already know that doc contains this documentation :-)

So let’s go into bin/. The icons/ directory contains some directories for your system,
in case you would like an icon to launch a component of IzPack . But the most important
things you can see in bin are the compile scripts (in both unix* and windows formats).
Compile is used to compile a ready-to-go xml installation file from a command-line
context or from an external tool.

Note : these scripts can be launched from anywhere on your system as the installer
has customized these scripts so that they can inform IzPack of where it is located.

Installation of IzPack

First go get the latest stable version of IzPack from: http://izpack.org/downloads
If needed download the Latest Java Run Time from Sun’s website http://java.sun.com/.

You should get the JRE if you intend to ONLY run the installer and get the SDK if
you’re willing to compile as well.

On Windows

Don’t forget to set up the environment variables:
If using the SDK:

set JAVA_HOME="C:\j2sdk1.4.2_04"
set JRE_HOME=%JAVA_HOME%/jre
set CLASSPATH=%JAVA_HOME%/bin;%CLASSPATH%
set PATH=%JAVA_HOME%/bin;%JRE_HOME%/bin;%PATH%

9

http://mlf.sf.net/
http://looks.dev.java.net/
https://nimbus.dev.java.net/
http://izpack.org/downloads
http://java.sun.com/

This is obvioulsy assuming that SDK has been installed to “C:j2sdk1.4.2 04”
If using the JRE:

set JAVA_HOME="C:\Program Files\Java\j2re1.4.2_05"
set CLASSPATH=%JAVA_HOME%/bin;%CLASSPATH%
set PATH=%JAVA_HOME%/bin;%PATH%

This is obviously assuming that SDK has been installed to“C:Program FilesJavaj2re1.4.2 05”
Once this is done, you can install IzPack using the following command:

java -jar izpack.jar

Where izpack.jar is the latest release you downloaded from IzPack website.

On UNIX/Linux

If needed download the Latest Java Run Time from Sun’s website http://java.sun.com/.
You should get the JRE if you intend to ONLY run the installer, but you should get the
SDK if you’re willing to compile as well.

If using the SDK:

export JAVA_HOME=/usr/java/j2sdk1.4.2_06
export JAVA_JAR=/usr/java/java_jar
export JRE_HOME=/usr/java/j2sdk1.4.2_06/jre
export CLASSPATH=/usr/java/j2sdk1.4.2_06/bin
export PATH=/usr/java/j2sdk1.4.2_06/bin:/usr/java/j2sdk1.4.2_06/jre/bin:$PATH

This is obviously assuming that java has been installed to /usr/java/j2sdk1.4.2 06
If using the JRE:

export JAVA_HOME=/usr/java/j2re1.4.2_05
export CLASSPATH=$JAVA_HOME/bin:$CLASSPATH
export PATH=$JAVA_HOME/bin:$PATH

This is obviously assuming that SDK has been installed to “/usr/java/j2re1.4.2 05”
You can put them into any script launched at startup if you don’t want to have to do
it everytime. For example, .bashrc of your user, so that whenever you’ll start a bash
console the variables will be set.

To verify that the environment is correct, type SET in the command prompt and
check if those variables are set before running any compilation.

Then you install IzPack using the following command:

java -jar izpack.jar

By default it will be installed in /usr/local/IzPack. Therefore you can create two
scripts, one for compiling your code and the second to execute the installer.

Compile.sh:

10

http://java.sun.com/

#!/bin/sh
/usr/local/IzPack/bin/compile /yourpath/Install.xml -b /yourpath -o /yourpath/yourjaroutput.jar -k standard

Install.sh:

#!/bin/sh
java -jar yourjaroutput.jar

BUGS and TROUBLESHOOTING

1. This is assuming that you’re current Unix/Linux allows the use of the server
X. In cas it doesn’t here is a way to install IzPack using cygwin (thanks to
Shrish Buradkar and Bartz Klaus for this trick):

Install cygwin on a remote machine. Cygwin can be downloaded from http://www.cygwin.com/
Firstly, start the XWindows server on your PC. This could be done by using
the startxwin-multiwindow batch file or running /usr/X11R6/bin/startxwin.sh
From the cygwin Xterm, type xhost + Then telnet to the remote UNIX/Linux
machine and set the DISPLAY to your PC. So after you have logged into
the remote machine, do export DISPLAY=pc-ip-adress:0.0 xterm & java -jar
installer.jar This should do the job by displaying an xterm from the remote
machine onto yor PC.

2. Normally launching packages created by IzPack under Gnome, KDE or XFCE
works fine. If when trying to launch a pack you receive this error message:

Exception in thread "main" java.lang.InternalError: Can’t connect to X11
window server using ’:0.0’ as the value of the DISPLAY variable.

at sun.awt.X11GraphicsEnvironment.initDisplay(Native Method)
at

sun.awt.X11GraphicsEnvironment.<clinit>(X11GraphicsEnvironment.java:134)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:141)
at

java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment(GraphicsEnvironment.java:62)
at java.awt.Font.initializeFont(Font.java:308)
at java.awt.Font.<init>(Font.java:344)
at

com.izforge.izpack.gui.IzPackMetalTheme.createFont(IzPackMetalTheme.java:62)
at

com.izforge.izpack.gui.IzPackMetalTheme.<init>(IzPackMetalTheme.java:52)
at

com.izforge.izpack.gui.IzPackKMetalTheme.<init>(IzPackKMetalTheme.java:59)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native

Method)
at

11

http://www.cygwin.com/

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27)
at java.lang.reflect.Constructor.newInstance(Constructor.java:274)
at java.lang.Class.newInstance0(Class.java:308)
at java.lang.Class.newInstance(Class.java:261)
at

com.izforge.izpack.installer.GUIInstaller.loadLookAndFeel(GUIInstaller.java:297)
at

com.izforge.izpack.installer.GUIInstaller.<init>(GUIInstaller.java:100)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native

Method)
at

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27)
at java.lang.reflect.Constructor.newInstance(Constructor.java:274)
at java.lang.Class.newInstance0(Class.java:308)
at java.lang.Class.newInstance(Class.java:261)
at com.izforge.izpack.installer.Installer.main(Installer.java:47)

Then, it’s most probably the fact that in some distribution the console and environ-
ment variables are “erased” when switching between users. So, you can type ’su -’ in
order to obtain all commands. With ’su -’ $DISPLAY variables is erased and all X11
connections is refused. So, a best and fast practice in this way is:

1. Log in your system by user

2. In shell type: ’$ echo $DISPLAY’

3. the result seems to be ’:0.0’. If the response isn’t there you can type:

4. ’$ export $DISPLAY=“:0.0”’

5. Now type $su for a “normal” alias by root.

6. Run: $ java -jar “package.jar”

First Compilation

Now you probably can’t wait to build your first installer. So go on open a command-line
shell and navigate to sample/. The following should work on both unix* and windows
systems. for the latter, just change the path separator (slash ’/’) to a backslash. So type
($ is your shell prompt !) :

$../bin/compile install.xml -b . -o install.jar -k standard
(installer generation text output here)
$ java -jar install.jar

12

There you are! The first command has produced the installer and the second one did
launch it.

How to develop and debug IzPack using Eclipse

(thanks to Bartz Klaus)
Here are the steps needed to develop adn debug IzPack with Eclipse:

1. IzPack Installation

Install the latest stable release of IzPack with the sources ! For more details
see the section “IzPack Installation”.

2. Custom class sources and build.xml

Put your custom class sources under %IZPACK HOME%srclib may be %IZ-
PACK HOME%srclibcomizforgeizpackpanelsMyPanel.java Add a create rule
into %IZPACK HOME%srcbuild.xml under target “build.panels”

3. Eclipse

You can get Eclipse from http://www.eclipse.org/downloads/index.php

4. Create IzPack project

Select File > New > Project... Java > Java Project > next > give a project
name like “IzPack” deselect “Use default” (2.x) or select “Create project at
external location” (3.x) Browse to %IZPACK HOME%srclib select it Next
> In “Libraries” select “Add External JARs...” select ant.jar and jakarta-
regexp-1.3.jar from %IZPACK HOME%lib Finish

5. Debug compile (create installation)

Select Run > Debug... Java Application New give a name e.g.“CompileMyIn-
stall” select in “Main” the project “IzPack” select as “main class”“Compile”
(from package com.izforge.izpack.compiler) As “Program arguments” put in
(for %SOME THING% use your local value) %SRC ROOT%%CONFIG SUBPATH%install.xml
-b %SRC ROOT% -o %INSTALLER DEST%install.jar As “VM arguments”
put in “-DIZPACK HOME=n:homebartzkauworkxt150 forIzPackizpack-src”

No you can debug the compiling of your installation.

5. Debug installation

Compile your installation; now you have %INSTALLER DEST%install.jar
Run > Debug... Java Application New give a name e.g. “InstallMyInstall”
select in “Main” the project “IzPack” select as “main class”“Installer” (from
package com.izforge.izpack.installer) as“VM arguments”use -DTRACE=true
select the tab “Classpath” select “User classes” (2.x) or “User Entries” (3.x)
select “Add External JARs...” select %INSTALLER DEST%install.jar (may
be, that’s the trick...) install.jar must be under the project entry

BUGS and TROUBLESHOOTING

13

http://www.eclipse.org/downloads/index.php

If you get this error when running the application could not create shortcut
instance

java.lang.Exception: error loading library
at com.izforge.izpack.util.Librarian.loadLibrary(Librarian.java:249)
at com.izforge.izpack.util.os.ShellLink.initialize(ShellLink.java:461)
at com.izforge.izpack.util.os.ShellLink.<init>(ShellLink.java:349)
at com.izforge.izpack.util.os.Win_Shortcut.initialize(Win_Shortcut.java:79)
at com.izforge.izpack.panels.ShortcutPanel.<init>(ShortcutPanel.java:473)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source)
at java.lang.reflect.Constructor.newInstance(Unknown Source)
at com.izforge.izpack.installer.InstallerFrame.loadPanels(InstallerFrame.java:203)
at com.izforge.izpack.installer.InstallerFrame.<init>(InstallerFrame.java:160)
at com.izforge.izpack.installer.GUIInstaller.loadGUI(GUIInstaller.java:391)
at com.izforge.izpack.installer.GUIInstaller.<init>(GUIInstaller.java:128)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source)
at java.lang.reflect.Constructor.newInstance(Unknown Source)
at java.lang.Class.newInstance0(Unknown Source)
at java.lang.Class.newInstance(Unknown Source)
at com.izforge.izpack.installer.Installer.main(Installer.java:62)

then it means you forgot to put the shelllink.dll into the correct source folder
in that case, copy %IZPACK HOME%binnativeizpackShellLink.dll to %IZ-
PACK HOME%srclibcomizforgeizpackutilosShellLink.dll

Now you can debug the installation. With 2.x you can edit on demand, if
%INSTALLER DEST%install.jar is shown in “Classpath” under the project.
With 3.x it seems so, that always the JAR will be loaded; therefore the
contents of install.jar and the sources should be synchron.

6. Debug uninstallation

Install your installation to %INSTALL PATH% Run > Debug... Java Appli-
cation New give a name e.g. “UninstallMyInstall” select in “Main” the project
“IzPack”select as“main class”“Uninstaller”(from package com.izforge.izpack.installer)
as “VM arguments” use -DTRACE=true select the tab “Classpath” select
“User classes” (2.x) or “User Entries” (3.x) select “Add External JARs...” se-
lect %INSTALL PATH%Uninstalleruninstall.jar uninstall.jar must be under
the project entry

Now, you can debug your uninstallation. Don’t worry if you get first a Null-
PointerException in SelfModifier. This should be; it is a hint, that the class
files of your eclipse session are used. If debugging not working, look whether:
there is a fresh installation the uninstall.jar is in the “Classpath” tab under

14

the project entry

The IzPack architecture

Now that you have packaged your first installer, it’s time for you to understand how the
whole thing works.

The compilation system

The compilation system is quite modular. Indeed, you can use the compiler in 2 ways :

• from a command-line

• from jakarta ant

The compilation architecture.

15

The compiler takes as its input an xml installation file that describes (at a relatively
high-level) the installation. this file contains detailed information such as the application
name, the authors, the files to install, the panels to use, which resources to load and
much more.

The compiler can generate different kinds of installers, but this information is not
located inside the xml file as it is not were it should be. On the contrary, this is a
compiler parameter.

The compilation options for a command-line installer are the following:
-? Gives a list of the available options. -b Specifies the base path, ie the one that will

be used to resolve the relative paths. if your xml file contains absolute paths, specify it
to an empty string (-b “”). -k Specifies the installer kind, for instance most users will
want standard here. -o Specifies the resulting installer jar file name.

How an installer works

An installer presents its panels to the end-user. for instance, there is one to select the
packages, one to prompt for the license agreement, one to select the installation path and
so on. You have a choice from a variety of panels to place in the installer. For example,
you can choose between a plain text and a html text panel for the license agreement.
also, if you don’t want of the hellopanel, you just don’t include it.

16

The content of an installer.

It is very important to understand that some of the panels may need extra data. for
instance, the license agreement panel needs the license text. A simple approach to specify
such data would have been to add as many xml tags as needed for each panel. However,
this makes the xml file too specific and not easy to maintain. The approach that has
been chosen is to put the data in files and we call these files resource files. They are
specified with a unique xml tag. this is a much cleaner approach.

You might wonder how your files are packaged. They can be grouped in packs. For
instance, you can have one pack for the core files, one for the documentation, one for
the source code and so on. In this way, your end-users will have the choice to install a
pack or not (provided that the pack they don’t want to install is not mandatory). Inside
the jar file (which is a zip file), a sub directory contains the pack files. Each pack file
contains the files that are part of it. Could we do it simpler ? :-)

The different kinds of installers

There are 2 kinds of installers available :

• Standard : a single-file ready-to-run installer

17

• Web : a web based installer (pack data is located on an http server, and the
installer retrieves it at install time (see section 3.6))

Installers for older vm versions

By default the installer will be made for the current most used version of the java
runtime environment. It is possible to create an installation that is runable with an
older vm version.

What version is used can be detected in the ant properties file that is used to build iz-
pack. It is [izpackroot]/src/ant.properties. The value of the property “source” determines
the vm version.

If compatibility to older versions is needed, a recompilation of the jar files of the izpack
system should be done. For this the sources of izpack and an ant installation are needed.
the sources of izpack are selectable at installation time of izpack. Before a recompilation
of all can be triggered, the version of byte code should be changed. This can be done
simple by changing the “source” entry in [izpackroot]/src/ant.properties to the needed
value. The recompilation should be performed with the current most used vm version
because there are classes of it referenced in the izpack code. Usage of an older vm version
at installation time will be possible because the classes of the newer vm version are only
used after a vm version check. Of course, some features of izpack will be missing at using
an old vm version. To recompile izpack go into [izpackroot]/src. Use a current jdk (not
jre) for this. call

ant clean

followed by

ant all

then all jar files in [izpackroot]/lib, [izpackroot]/bin/panels and [izpackroot]/bin/customactions
should be recompiled with the selected source version.

Writing Installation XML Files

What You Need

Your editor

In order to write your XML installation files, you just need a plain text editor. Of course
it’s always easier to work with color coded text, so you might rather want to work with
a text editor having such a feature. Here is a list of free editors that work well :

• Jext : http://www.jext.org/

• JEdit : http://www.jedit.org/

• classics like Vim and (X)Emacs.

18

http://www.jext.org/
http://www.jedit.org/

If you are a developer and tend to write your own patches, extension or features to
IzPack sources, or, if you wish to debug your compilation, installation and uninstallation,
we recommend these IDE:

• IntelliJ IDEA : http://www.jetbrains.com/idea/

• Eclipse : http://www.eclipse.org/

• Netbeans : http://www.netbeans.org/

For the first one, JetBrains has granted us an Open Source License. All project mem-
bers can ask the Licence Key to one of the project manager.

The other ones are well know open source projects (Just like us :-)). We provide a
tutorial on how to develop/debug IzPack using Eclipse in the chapter ’’Getting Started
> How to develop and debug IpPack using Eclipse’’

Writing XML

Though you might not know much about XML, you have certainly heard about it. If
you know XML you can skip this subsection as we will briefly present how to use XML.

XML is a markup language, really close to HTML. If you’ve ever worked with HTML
the transition will be fast. However there are a few little things to know. The markups
used in XML have the following form : <markup>. Each markup has to be closed some-
where with its ending tag : </markup>. Each tag can contain text and other markups. If
a markup does not contain anything, it is just reported once : <markup/>. A markup can
contain attributes like : <markup attr1="123" attr2="hello !"/>. Here is a sample
of a valid XML structure :

<chapter title="Chapter 1">
<section name="Introduction">
<paragraph>
This is the text of the paragraph number 1. It is available
for the very low
price of <price currency="dollar">1 000 000</price>.
</paragraph>

</section>
<section name="xxx">
xxx
</section>

</chapter>

You should be aware of the following common mistakes :

• markups are case sensitive : <markup> is different from <Markup>.

• you must close the markups in the same order as you create them : <m1><m2>(...)</m2></m1>
is right but ‘‘ <m1><m2>(...)</m1></m2>‘‘ is not.

19

http://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.netbeans.org/

Also, an XML file must start with the following header : <?xml version="1.0"
encoding="iso-8859-1 standalone="yes" ?>. The only thing you should modify is
the encoding (put here the one your text editor saves your files to). The ‘‘ standalone‘‘
attribute is not very important for us.

This (brief !) introduction to XML was just meant to enable you to write your in-
stallation specification. For a better introduction there are plenty of books and arti-
cles/tutorials dealing with XML on the Internet, in book stores, in magazines and so
on.

Variable Substitution

During the installation process IzPack can substitute variables in various places with real
values. Obvious targets for variable substitution are resource files and launch scripts,
however you will notice many more places where it is more powerful to use variables
rather then hard coded values. Wherever variables can be used it will be explained in
the documentation.

There are three types of variables:

• Built-In variables. These are implemented in IzPack and are all dynamic in
nature. This means that the value of each variable depends on local conditions
on the target system.

• Environment variables. These are provided by the operating system the installer
is run on.

• Variables that you can define. You also define the value, which is fixed for a
given installation file.

You define your own variables in the installation XML file with the <variable> tag.
How to do this is explained in detail later in this chapter.

Please note that when using variables they must always appear with a ’$’ sign as
the first character, even though they are not defined this way.

The Built-In Variables

The following variables are built-in :

• $INSTALL_PATH : the installation path on the target system, as chosen by the
user

• $APPLICATIONS_DEFAULT_ROOT : the default path for applications

• $JAVA_HOME : the JavaTM virtual machine home path

• $CLASS_PATH : the Class Path used mainly for Java Applications

• $USER_HOME : the user’s home directory path

• $USER_name : the user name

• $APP_name : the application name

20

• $APP_URL : the application URL

• $APP_VER : the application version

• $ISO3_LANG : the ISO3 language code of the selected langpack.

• $IP_ADDRESS : the IP Address of the local machine.

• $HOST_NAME : the HostName of the local machine.

• $FILE_SEPARATOR : the file separator on the installation system

• $DesktopShortcutCheckboxEnabled : When set to true, it automatically checks
the“Create Desktop Shortcuts”button. To see how to use it, go to The Variables
Element ‘‘<variables>‘ Be careful this variable is case sensitve !

• $InstallerFrame.logfilePath : The path to the install log. This file contains
the paths of all installed files. If set to“default”then the“$INSTALL PATH/Uninstaller/install.log”
path will be used. To see how to use it, go to The Variables Element ‘‘<vari-
ables>‘. If this variable is not set, no install.log will be created.

Environment Variables

Environment variables can be accessed via the syntax ${ENV[variable]}. The curly
braces are mandatory. Note that variable names are case-sensitive and usually in UPPER
CASE.

Example: To get the value of the OS environment variable “CATALINA HOME”, use
${ENV[CATALINA_HOME]}.

Dynamic Variables

Dynamic variables can be defined in the installation XML with the <variable> tag inside
the <dynamicvariables> element. The value of dynamic variables will be evaluated every
time a panel is switched, i.e. between the panels. Dynamic variables can have a condition
which will be evaluated first. If it’s true, the value would be assigned, otherwise nothing
happens to the variable.

Example: To change a certain directory based on user input, use the following <variable
name="test" value="/test/${USER_INPUT}" condition="hasuserinput" /> The con-
dition has userinput has to be specified in the condition section of installation XML.

Parse Types

Parse types apply only when replacing variables in text files. At places where it might
be necessary to specify a parse type, the documentation will mention this. Depending
on the parse type, IzPack will handle special cases -such as escaping control characters-
correctly. The following parse types are available:

• plain - use this type for plain text files, where no special substitution rules
apply. All variables will be replaced with their respective values as is.

21

• javaprop - use this type if the substitution happens in a Java properties file.
Individual variables might be modified to function properly within the context
of Java property files.

• xml - use this type if the substitution happens in a XML file. Individual variables
might be modified to function properly within the context of XML files.

• shell - use this type if the substitution happens in a shell script. Because
shell scripts use $variable themselves, an alternative variable marker is used:
%variable or %{variable}.

• at - use this type if the substitution must occure on files where paramters are
marked with leading AT characters. The example: @variable.

• ant - use this type if the substitution must occure on files where parameters are
surrounded with AT characters (similar to ANT filters, hence the type name).
The example: @variable@.

Unless using braces to surround variable’s name (${variable} or %{variable}}, the
variable name can contain following characters: letters, digits, dots, dashes (-), underbars
(). Example: $this.is-my_variable

If you want to have two variables separated by character that is allowed to appear
in variable name, for example: $major-version.$minor-version, then you must use
braces, and the above example should look like: ${major-version}.${minor-version}.

The IzPack Elements

When writing your installer XML files, it’s a good idea to have a look at the iZPACK
installation DTD.

The Root Element <installation>

The root element of an installation is <installation>. It takes one required attribute
: version. The attribute defines the version of the XML file layout and is used by the
compiler to identify if it is compatible with the XML file. This should be set to 1.0 for
the moment.

The Information Element <info>

This element is used to specify some general information for the installer. It contains the
following elements :

• <appname> : the application name

• <appversion> : the application version

• <appsubpath> : the subpath for the default of the installation path. A variable
substitution and a maskable slash-backslash conversion will be done. If this tag
is not defined, the application name will be used instead.

22

• <url> : the application official website url

• <authors> : specifies the author(s) of the application. It must contain at least
one <author> element whose attributes are :

– name : the author’s name
– email : the author’s email

• <uninstaller> : specifies whether to create an uninstaller after installation,
and which name to use for it. This tag has the write attribute, with default
value ‘‘ yes‘‘. If this tag is not specified, the uninstaller will still be written.
The name attribute can be used to change the default name of the generated
uninstaller, i.e. ‘‘ uninstaller.jar‘‘. The condition attribute can be used to
specify a condition which has to be fullfilled for creating the uninstaller.

• <javaversion> : specifies the minimum version of Java required to install your
program. Values can be 1.2, 1.2.2, 1.4, etc. The test is a lexical comparison
against the java.version System property on the install machine.

• <requiresjdk>: (yes or no) specifies wether a JDK is required for the software
to be installed and executed. If not, then the user will be informed and given
the option to still proceed with the installation process or not.

• <webdir> : Causes a ’’web installer’’ to be created, and specifies the URL pack-
ages are retrieved from at install time. The content of the tag must be a properly
formed URL.

• <summarylogfilepath> : specifies the path for the logfile of the SummaryLog-
gerInstallerListener.

• <writeinstallationinformation> : (yes or no) specifies if the file .installinfor-
mation should be written which includes the information about installed packs.
The default if not specified is yes.

• <pack200/>: adding this element will cause every JAR file that you will add to
your packs to be compressed using Pack200 (see http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-
guide/pack200.html). As a special exception, signed JARs are not compressed
using Pack200, as it would invalidate the signatures. This makes the compilation
process a little bit longer, but it usually results in drasticaly smaller installer
files. The decompression is relatively fast. Please note that Pack200 compression
is destructive, i.e., after decompression a JAR won’t be identical to its original
version (yet the code in the class files remains semantically equivalent).

Here is an example of a typical <info> section :

<info>
<appname>Super extractor</appname>
<appversion>2.1 beta 6</appversion>
<appsubpath>myCompany/SExtractor</appsubpath>
<url>http://www.superextractor.com/</url>

23

http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

<authors>
<author name="John John Doo" email="jjd@jjd-mail.com"/>
<author name="El Goyo" email="goyoman@mymail.org"/>

</authors>
<javaversion>1.2</javaversion>

</info>

The Packaging Element <packaging>

This element allows to specify packaging options. If not specified, the default will be to
create an all in one installer. This element will usually be used to create an installer which
spans over multiple volumes, e.g. the output will be two CDs. The packaging-element
contains the following elements:

• <packager> : specifies options used by the packager. The packager tag has the
class attribute, which specifys the class to use for packaging. Currently two im-
plementations are available (com.izforge.izpack.compiler.Packager, com.izforge.izpack.compiler.MultiVolumePackager).
The packager-element can contain the <options> element which can have dif-
ferent attributes for the different implementations of packagers. For the Multi-
VolumePackager, it can have the following attributes:

– volumesize: the size of the volumes
– firstvolumefreespace: free space on the first volume used for the

installer jar and additional resources like readme-files etc.

• <unpacker> : specifies which unpacker class should be used. Currently there are
two unpacker implementations
(com.izforge.izpack.compiler.UnPacker, com.izforge.izpack.compiler.MultiVolumeUnPacker).

Here’s an example how to specify an installer which will create multiple volumes. In
this example the volumes shall be CDs with 650 megabytes. There will be an additional
free space of 150 megabytes on the first volume. This will result in the creation of an
installer.jar and multiple installer.pak* files. The installer.jar plus installer.pak plus the
additional resources have to be copied on the first volume, each installer.pak.<number>
on several volumes.

<packaging>
<packager class="com.izforge.izpack.compiler.MultiVolumePackager">

<!-- 650 MB volumes, 150 MB space on the first volume -->
<options volumesize="681574400" firstvolumefreespace="157286400"/>

</packager>
<unpacker class="com.izforge.izpack.installer.MultiVolumeUnpacker" />

</packaging>

24

The Variables Element <variables>

This element allows you to define variables for the variables substitution system. Some
variables are built-in, such as $INSTALL_PATH (which is the installation path chosen by
the user). When you define a set of variables, you just have to place as many <variable>
tags in the file as needed. If you define a variable named VERSION you need to type
$VERSION in the files to parse. The variable substitutor will then replace it with the
correct value. One <variable> tag take the following attributes :

• name : the variable name

• value : the variable value

Here’s a sample <variables> section :

<variables>
<variable name="app-version" value="1.4"/>
<variable name="released-on" value="08/03/2002"/>

</variables>

Here’s a precise sample on how to use desktopshortcutcheckboxenabled and Installer-
Frame.logfilePath variables:

<variables>
<variable name="InstallerFrame.logfilePath" value="$INSTALL_PATH
/My-install.log"/>
<!-- This means that the log name will be My-install and that

it will be stored at the root of the installation. -->
<!-- Any path is fine. If value is set to "Default" then

"$INSTALL_PATH/uninstall/install.log" is used. -->
<!-- And if variable isn’t defined then no log is written. -->

<variable name="desktopshortcutcheckboxenabled" value="true"/>
<!-- This automatically checks the "Create Desktop Shortcuts"

button. Default value is "False". -->
</variables>

The dynamic Variables Element <dynamicvariables>

This element allows you to define dynamic variables for the variables substitution system.
In contrast to the static <variables, dynamic variables will be evaluated every time, a
panel switch is done.

When you define a set of variables, you just have to place as many <variable> tags
in the file as needed. Normally you would use the condition attribute to specify, when a
certain value will be set.

One <variable> tag take the following attributes :

• name : the variable name

25

• value : the variable value

• condition : a condition for this variable, which has to be true to set the value

Here’s a sample <dynamicvariables> section :

<dynamicvariables>
<variable name="app-version" value="1.4" condition="mycondition1" />
<variable name="app-version" value="1.4b" condition="!mycondition1" />
<variable name="released-on" value="08/03/2002" />

</dynamicvariables>

The Conditions Element <conditions>

This element allows you to define conditions which can be used to dynamically change
the installer, e.g. the panels shown, the variables set, files parsed, files executed and
much more. When you define a condition it will get a type and an id. The id has to be
unique. Conditions can be referenced based on this id (e.g. with the RefCondition).

There are several built-in types of conditions. At the time of writing this, Izpack has
the following built-in types:

• VariableCondition: a condition based on the value of a certain variable

• PackSelectionCondition: a condition based on a pack selected for installation

• JavaCondition: a condition based on a static java field or method.

• CompareNumericsCondition: a condition based on the comparison of a certain
variable with a given value and operator.

There are also boolean types to combine more than one condition:

• AndCondition: both conditions have to be true

• OrCondition: only one of both conditions has to be true

• XOrCondition: one condition has to be true, the other one has to be false

• NotCondition: the condition has to be false

When you define a set of conditions, you just have to write as many <condition> tags
as you like. A condition can take the following attributes:

• type: the type of the condition. For built-in types, this is the lowercase portion
of the condition class
name without condition appended (variable,packselection,java, ...). Cus-
tom condition types should be referenced by the full qualified class name,
e.g. de.dr.rules.MyCoolCondition.

• id: the id of the condition. This will be used to refer to this conditions in other
elements

26

The condition element can have several child elements depending on the type of this
conditions. E.g. the VariableCondition has a name and value child element to specify,
which variable should have a certain value to fullfil this condition.

This is an example which defines four conditions, two VariableConditions, a JavaCon-
dition and a AndCondition which will refer to two of the first conditions.

<conditions>
<condition type="variable" id="standardinstallation">

<name>setup.type</name>
<value>standard</name>

</condition>
<condition type="variable" id="expertinstallation">

<name>setup.type</name>
<value>expert</name>

</condition>
<condition type="java" id="installonwindows">

<java>
<class>com.izforge.izpack.util.OsVersion</class>
<field>IS_WINDOWS</field>

</java>
<returnvalue type="boolean">true</returnvalue>

</condition>
<condition type="and" id="standardinstallation.onwindows">

<condition type="ref" refid="standardinstallation"/>
<condition type="ref" refid="installonwindows" />

</condition>
</condition>

Note, from IzPack 3.11 on normally, you don’t have to define the compound condi-
tions because you can use a simple expression language. The language has the following
operators:

• +: an operator for the Andcondition

• |: an operator for the OrCondition

• \: an operator for the XOrCondition

• !: an operator for the NotCondition

Neverthless if you define really complex conditions it’s much easier to define them
using the xml structure.

More types of conditions can be defined by inheriting com.izforge.izpack.Condition
class.

27

The Installer Requirements Element <installerrequirements>

This element allows to specify requirements for running the installation. This will be
done based on conditions defined in the conditons section.

An installer requirement consists of a condition and a message which will be shown
if the condition is not fulfilled. If so, the installer will show the message and exit after
that.

• installerrequirement: specifies a single installer requirement. You can define
an unlimited number of them.

Installerrequirements have the following attributes: - condition: an id of a condition
defined in the conditions section - message: a message text or a langpack key defining
which message should be shown before exiting the installer in case of a missing require-
ment.

<installerrequirements>
<installerrequirement conditon="installonwindows" message="This installer could only be run on Windows operating systems."/>

</installerrequirements>

The GUI Preferences Element <guiprefs>

This element allows you to set the behavior of your installer GUI. This information
will not have any effect on the command-line installers that will be available in future
versions of IzPack. The arguments to specify are :

• resizable : takes yes or no and indicates whether the window size can be
changed or not.

• width : sets the initial window width

• height : sets the initial window height.

Here’s a sample :

<guiprefs resizable="no" width="800" height="600"/>

Starting from IzPack 3.6, the look and feel can be specified in this section on a per-OS
basis. For instance you can use the native look and feels on Win32 and OS X but use
a third-party one on Unix-like platforms. To do that, you have to add some children to
the guiprefs tag:

• laf: the tag that specifies a look and feel. It has a name parameter that defines
the look and feel name.

• Each laf element needs at least one os tag, specified like in the other parts of
the specification that support this tag.

28

• Like you can add os elements, you can add any number of param elements to
customize a look and feel. A param elements has two attribues: name and ‘‘
value‘‘.

The available look and feels are:

• Kunststoff: kunststoff

• Liquid: liquid

• Metouia: metouia

• JGoodies Looks: looks

• Substance: substance

If you don’t specify a look and feel for a particular operating system, then the default
native one will be used: Windows on Windows, Aqua on Mac OS X and Metal on the
Unix-like variants.

The Liquid Look and Feel supports the following parameters:

• decorate.frames: yes means that it will render the frames in Liquid style

• decorate.dialogs: yes means that it will render the dialogs in Liquid style

The JGoodies Looks look and feel can be specified by using the variant parameters.
The values can be one of:

• windows: use the Windows look

• plastic: use the basic Plastic look

• plastic3D: use the Plastic 3D look

• plasticXP: use the Plastic XP look (default).

Here is a small sample:

<guiprefs height="600" resizable="yes" width="800">
<laf name="metouia">

<os family="unix" />
</laf>
<laf name="looks">

<os family="windows" />
<param name="variant" value="extwin" />

</laf>
</guiprefs>

The Substance look and feel toned-down themes can be specified using the variant pa-
rameter, with the value being one of: business, business- blue, business-black,
creme, sahara, moderate, officesilver. We have reduced the choice to the toned-
down themes since they are the only ones to actually look decent (the other families colors

29

are way too saturated). Please consult https://substance.dev.java.net/docs/skins/toneddown.html
for a gallery of the different toned-down themes.

Starting from IzPack 3.7, some characteristics can be customized with the <modifier>
tag. There is a separate description in the Advanced Features chapter paragraph Modi-
fying the GUI.

The Localization Element <locale>

This element is used to specify the language packs (langpacks) that you want to use for
your installer. You must set one <langpack> markup per language. This markup takes
the ‘‘ iso3‘‘ parameter which specifies the iso3 language code.

Here’s a sample :

<locale>
<langpack iso3="eng"/>
<langpack iso3="fra"/>
<langpack iso3="spa"/>

</locale>

The supported ISO3 codes are :

ISO3 code Language

cat Catalunyan
chn Chinese
cze Czech
dan Danish
glg Galician
deu German
eng English
fin Finnish
fra French
hun Hungarian
ita Italian
jpn Japanese
mys Malaysian
ned Nederlands
nor Norwegian
pol Polnish
por Portuguese (Brazilian)
rom Romanian

30

https://substance.dev.java.net/docs/skins/toneddown.html

ISO3 code Language

rus Russian
scg Serbian
spa Spanish
svk Slovakian
swe Swedish
ukr Ukrainian

The Resources Element <resources>

Several panels, such as the license panel and the shortcut panel, require additional data to
perform their task. This data is supplied in the form of resources. This section describes
how to specify them. Take a look at each panel description to see if it might need any
resources. Currently, no checks are made to ensure resources needed by any panel have
been included. The ‘‘ <resources>‘‘ element is not required, and no <res> elements
are required within. The <resources> element is the only element besides the <packs>
element that is taken into consideration in referenced pack-files (see ‘<packs> element‘
for more info)

You have to set one <res> markup for each resource. Here are the attributes to specify
:

• src : the path to the resource file which can be named freely of course (for
instance my-picture.jpg).

• id : the resource id, depending on the needs of a particular panel

• parse : takes yes or no (default is no) - used to specify whether the resource
must be parsed at the installer compilation time. For instance you could set the
application version in a readme file used by InfoPanel.

• type : specifies the parse type. This makes sense only for a text resource - the
default is plain, other values are javaprop, xml (Java properties file and XML
files)

• encoding : specifies the resource encoding if the receiver needs to know. This
makes sense only for a text resource.

Here’s a sample :

<resources>
<res id="InfoPanel.info" src="doc/readme.txt" parse="yes"/>
<res id="LicencePanel.licence" src="legal/License.txt"/>

</resources>

31

The Panels Element <panels>

Here you tell the compiler which panels you want to use. They will appear in the installer
in the order in which they are listed in your XML installation file. Take a look at the
different panels in order to find the ones you need. The <panel> markup takes the
following attributes:

• classname: which is the classname of the panel.

• id: an identifier for a panel which can be used e.g. for referencing in userinput
panel definitions.

• condition: an id of a condition which has to be fullfilled to show this panel

Here’s a sample :

<panels>
<panel classname="HelloPanel"/>
<panel classname="LicencePanel"/>
<panel classname="TargetPanel"/>
<panel classname="InstallPanel"/>
<panel classname="UserInputPanel" id="myuserinput" condition="pack2selected" />
<panel classname="FinishPanel"/>

</panels>

The Packs Element <packs>

This is a crucial section as it is used to specify the files that need to be installed. The
<packs> section consists of several <pack> and <refpack> tags.

The <pack> takes the following attributes :

• name: the pack name

• required: takes yes or no and specifies whether the pack is optional or not.

• os: optional attribute that lets you make the pack targeted to a specific operating
system, for instance unix, mac and so on.

• preselected: optional attribute that lets you choose whether the pack is by
default selected for installation or not. Possible values are yes and no. A pack
which is not preselected needs to be explicitly selected by the user during in-
stallation to get installed.

• loose: can be used so that the files are not located in the installer Jar. The
possible values are true or false, the default beeing false. The author of this
feature needed to put his application on a CD so that the users could run it
directly from this media. However, he also wanted to offer them the possibility
to install the software localy. Enabling this feature will make IzPack take the
files on disk instead of from the installer. Please make sure that your relative
files paths are correct !

32

• id: this attribute is used to give a unique id to the pack to be used for interna-
tionalization.

• packImgId: this attribute is used to reference a unique resource that represents
the pack’s image for the ImgPacksPanel. The resource should be defined in the
<resources> element of the installation XML using the same value for the id
attribute of the <res> element.

• condition: an id of a condition which has to be fullfilled to install this package.

The <refpack> takes only one attribute file, which contains the relative path (from
the installation compiler) to an externally defined packs-definition. This external packs
definition is a regular IzPack installation XML. However the only elements that are used
from that XML file are the <packs> and the <resources> elements. This enables a
model in which a single developer is responsible for maintaining the packs and resources
related to the development-package assigned to him. The main install XML references
these xml-files to avoid synchronization efforts between the central installation XML and
the developer-maintained installer XMLs.

Internationalization of the PacksPanel

In order to provide internationalization for the PacksPanel, so that your users can be
presented with a different name and description for each language you support, you have
to create a file named packsLang.xml_xyz where xyz is the ISO3 code of the language
in lowercase. Please be aware that case is significant. This file has to be inserted in the
resources section of ‘‘ install.xml‘‘ with the id and src attributes set at the name of
the file. The format of these files is identical with the distribution langpack files located
at ‘‘ $IZPACK HOME/bin/langpacks/installer‘‘. For the name of the panel you just
use the pack id as the txt id. For the description you use the pack id suffixed with
.description.

The following sections describe the tags available for a <pack> section.

<description> - pack description

The contents of the <description> tag describe the pack contents. This description is
displayed if the user highlights the pack during installation.

<depends> - pack dependencies

This can be used to make this pack selectable only to be installed only if some other is
selected to be installed. The pack can depend on more than one by specifying more than
one ‘‘ <depends>‘‘ elements. Circular depedencies are not supported and the compiler
reports an error if one occurs.

This tag takes the following attribute:

• packname: The name of the pack that it depends on

33

<os> - OS restrictions

It is possible to restrict a panel to a certain list of operating systems. This tag takes the
following attributes:

• family: unix, windows or mac

• name: the exact OS name (ie Windows, Linux, ...)

• version: the exact OS version (see the JVM os.version property)

• arch: the machine architecture (see the JVM os.arch property).

<updatecheck>

This feature can update an already installed package, therefore removing superfluous
files after installation. Here’s how this feature author (Tino Schwarze) described it on
the IzPack development mailing-list:

> Each pack can now specify an <updatecheck> tag. It supports a subset of ant fileset
syntax, e.g.:

<updatecheck>
<include name="lib/**" />
<exclude name="config/local/** />

</updatecheck>

> If the paths are relative, they will be matched relative to $INSTALL_PATH. Update
checks are only enabled if at least one <include> is specified. See ‘‘ com.izforge.izpack.installer.Unpacker‘‘
for details.

<file> - add files or directories

The <file> tag specifies a file (a directory is a file too) to include into the pack. It takes
the following attributes:

• src: the file location (relative path) - if this is a directory its content will be
added recursively

• targetdir: the destination directory, could be something like $INSTALL_PATH/subdirX

• os: can optionally specify a target operating system (unix, windows, mac) -
this means that the file will only be installed on its target operating system

• override: if true then if the file is already installed, it will be overwritten (use
false otherwise). Alternative values: asktrue and askfalse - ask the user
what to do and supply default value for non-interactive use. Another possible
values is update. It means that the new file is only installed if it’s modification
time is newer than the modification time of the already existing file (note that
this is not a reliable mechanism for updates - you cannot detect whether a file
was altered after installation this way.) By default it is set to ‘‘ update‘‘.

34

• unpack: if true and the file is an archive then its content will be unpacked and
added as individual files

• condition: an id of a condition which has to be fullfilled to install this file

<additionaldata>

This tag can also be specified in order to pass additional data related to a file tag for
customizing.

• <key>: key to identify the data

• <value>: value which can be used by a custom action

<singlefile> - add a single file

Specifies a single file to include. The difference to <file> is that this tag allows the file
to be renamed, therefore it has a target attribute instead of ‘‘ targetdir‘‘.

• src: the file location (relative path)

• target: the destination file name, could be something like $INSTALL_PATH/subdirX/fileY

• os: can optionally specify a target operating system (unix, windows, mac) -
this means that the file will only be installed on its target operating system

• override: see <file> for description

• condition: an id of a condition which has to be fullfilled to install this file

A <additionaldata> tag can also be specified for customizing.

<fileset>: add a fileset

The <fileset> tag allows files to be specified using the powerful Jakarta Ant set syntax.
It takes the following parameters:

• dir: the base directory for the fileset (relative path)

• targetdir: the destination path, works like for <file>

• casesensitive: optionally lets you specify if the names are case- sensitive or
not - takes yes or no

• defaultexcludes: optionally lets you specify if the default excludes will be
used - takes yes or no.

• os: specifies the operating system, works like for <file>

• override: see <file> for description

• includes: comma- or space-separated list of patterns of files that must be in-
cluded; all files are included when omitted. This is an alternative for multiple
include tags.

35

• excludes: comma- or space-separated list of patterns of files that must be ex-
cluded; no files (except default excludes) are excluded when omitted. This is an
alternative for multiple exclude tags.

• condition: an id of a condition which has to be fullfilled to install the files in
this fileset

You specify the files with <include> and <exclude> tags that take the name parameter
to specify the Ant-like pattern :

• ** : means any subdirectory

• * : used as a wildcard.

Here are some examples of Ant patterns :

• <include name="lib"/> : will include lib and the subdirectories of lib

• <exclude name="**/*.java"/> : will exclude any file in any directory starting
from the base path ending by .java

• <include name="lib/*.jar"/> : will include all the files ending by .jar in
lib

• <exclude name="lib/**/*FOO*"/> : will exclude any file in any subdirectory
starting from lib whose name contains FOO.

There area set of definitions that are excluded by default file-sets, just as in Ant.
IzPack defaults to the Ant list of default excludes. There is currently no equivalent to
the <defaultexcludes> task. Default excludes are:

**/*\~{}
/\#\#
/.\#
/%%
/._
*/CVS
*/CVS/**
*/.cvsignore
*/SCCS
*/SCCS/**
*/vssver.scc
*/.svn
*/.svn/**
*/.DS_Store

A <additionaldata> tag can also be specified for customizing.

36

<parsable> - parse a file after installation

Files specified by <parsable> are parsed after installation and may have variables sub-
stituted.

• targetfile : the file to parse, could be something like $INSTALL_PATH/bin/launch-script.sh
A slash will be changed to the system dependant path separator (e.g. to a back-
slash on Windows) only if no backslash masks the slash.

• type : specifies the type (same as for the resources) - the default is plain

• encoding : specifies the file encoding

• os: specifies the operating system, works like for <file>

• condition: an id of a condition which has to be fullfilled to parse this file

<executable> - mark file executable or execute it

The <executable> tag is a very useful thing if you need to execute something during the
installation process. It can also be used to set the executable flag on Unix-like systems.
Here are the attributes :

• targetfile : the file to run, could be something like $INSTALL_PATH/bin/launch-script.sh
Slashes are handled special (see attribute targetfile of tag <parsable>).

• class : If the executable is a jar file, this is the class to run for a JavaTM
program

• type : bin or jar (the default is bin)

• stage : specifies when to launch : postinstall is just after the installation is
done, never will never launch it (useful to set the +x flag on Unix). uninstall
will launch the executable when the application is uninstalled. The executable
is executed before any files are deleted. never is the default value.

• failure : specifies what to do when an error occurs : abort will abort the
installation process, ask (default) will ask the user what to do and warn will
just tell the user that something is wrong

• os: specifies the operating system, works like for <file>

• keep : specifies whether the file will be kept after execution. The default is to
delete the file after is has been executed. This can be changed by specifying
keep="true".

• condition: an id of a condition which has to be fullfilled to execute this file

A <args> tag can also be specified in order to pass arguments to the executable:

• <arg>: passes the argument specified in the value attribute. Slashes are handled
special (see attribute targetfile of tag <parsable>.

37

<os> - make a file OS-dependent

The <os> tag can be used inside the <file>, <fileset>, <singlefile>, <parsable>,
<executable> tags to restrict it’s effect to a specific operating system family, architec-
ture or version:

• family: unix, windows, mac to specify the operating system family

• name: the operating system name

• version: the operating system version

• arch: the operating system architecture (for instance the Linux kernel can run
on i386, sparc, and so on)

Here’s an example installation file :

<packs>
<!-- The core files -->
<pack name="Core" required="yes">

<description>The IzPack core files.</description>
<file targetdir="$INSTALL_PATH" src="bin"/>
<file targetdir="$INSTALL_PATH" src="lib"/>
<file targetdir="$INSTALL_PATH" src="legal"/>
<file targetdir="$INSTALL_PATH" src="Readme.txt"/>
<file targetdir="$INSTALL_PATH" src="Versions.txt"/>
<file targetdir="$INSTALL_PATH" src="Thanks.txt"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-fe"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-
fe.bat"/>
<parsable targetfile="$INSTALL_PATH/bin/compile"/>
<parsable
targetfile="$INSTALL_PATH/bin/compile.bat"/>
<executable targetfile="$INSTALL_PATH/bin/compile"
stage="never"/>
<executable targetfile="$INSTALL_PATH/bin/izpack-fe"
stage="never"/>

</pack>

<!-- The documentation (1 directory) -->
<pack name="Documentation" required="no">

<description>The IzPack documentation (HTML and
PDF).</description>
<file targetdir="$INSTALL_PATH" src="doc"/>

</pack>
</packs>

38

The Native Element <native>

Use this if you want to use a feature that requires a native library. The native libraries are
placed under bin/native/... There are 2 kinds of native libraries : the iZPACK libraries
and the third-party ones. The IzPack libraries are located at bin/native/izpack, you
can place your own libraries at ‘‘ bin/native/3rdparty‘‘. It is possible to place a native
library also into the uninstaller. It is useable from CustomActions. If one or more are
referenced for it, the needed support classes are automatically placed into the uninstaller.
To place it only on operating systems for which they are build, it is possible to define an
OS restriction. This restriction will only be performed for the uninstaller. The markup
takes the following attributes :

• type : izpack or 3rdparty

• name : the library filename

• stage: stage where to use the library (install|uninstall|both)

<os> - make a library OS-dependent

The <os> tag can be used to restrict the inclusion into the uninstaller to a specific
operating system family, architecture or version. The inclusion into the installer will be
always done.

Here’s a sample :

<native type="izpack" name="ShellLink.dll"/>

The Jar Merging Element <jar>

If you adapt iZPACK for your own needs, you might need to merge the content of
another jar file into the jar installer. For instance, this could be a library that you need
to merge. The <jar> markup allows you to merge the raw content of another jar file
into the installer and the uninstaller. It is necessary that the paths in the jars are unique
because only the contained files of the jar are added to the installer jar, not the jar file
self. The attributes are:

• src : the path at compile time

• stage: stage where to use the contents of the additional jar file (install|uninstall|both)

A sample :

<jar src="../nicelibrary.jar"/>

39

XInclude-style constructs

The xinclude element is used to include xml or text documents in your configuration
files.

The xinclude element can be used anywhere in pretty much any of the xml files
used by IzPack. It is based on the XInclude recomendation produced by the W3C
(http://www.w3.org/TR/xinclude/) and should be able to be used as decribed in that
document. Note that as namespaces are not supported in IzPack the elements specified by
the w3c have been prefixed with ’x’ so ’xsi:include’ becomes ’xinclude’ and ’xsi:fallback’
becomes ’xfallback’.

The xinclude element has the following attributes:

href
The location of the file to include. If this is a relative path (e.g. href=’../bob.xml’)
then the file is resolved relative to the document that includes the xinclude element.
The href element can be a remote url (e.g. href=’http://example.com/file.txt’) but
this is not recommended. The href attribute can also be ommitted however as
xpointers are not currently supported this has no meaning.

parse
Indicates that the included file should be treated as xml, forcing the included file
to be parsed (which results in all xinclude elements in the included file to also be
included), or as text which includes the specified file as a text node. It can have a
value of ’xml’ or ’text’ and defaults to ’xml’ if ommitted

xpointer
This element is not supported

encoding
This is used when the parse attribute is ’text’ to specify the character encoding of
the included text document. It has no effect if parse is ’xml’

accept
Used if the href attribute specifies a url accessible via HTTP. The value of this
attribute will be added as the accpet header on the HTTP request.

The xfallback element

The xfallback element is used to provide a fallback if the xinclude element fails. It can
be empty or can contain a CDATA section containing valid xml (no document fragments
allowed). If it is empty then a failure to include the specified document is supressed. If
it contains a CDATA section then a failure to include the specified document causes the
xml specified in the CDATA is parsed (evaluating nested xinclude elements) and inserted
into the document in its place.

For example the following use of xinclude

40

http://www.w3.org/TR/xinclude/
http://example.com/file.txt

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<installation version="1.0" xmlns:xi="http://www.izforge.com/izpack/include">

<xinclude href="does-not-exist.xml">
<xfallback>

<![CDATA[<bbb>hello</bbb>]]>
</xfallback>

</xinclude>
</installation>

will result in

<installation version="1.0" xmlns:xi="http://www.izforge.com/izpack/include">
<bbb>hello</bbb>]]>

</installation>

if the file ’does-not-exist.xml’ does indeed not exist.

The xfragment element

The xfragment element allows document fragments (xml documents without a single top
level element) to be included. Simply use the xfragment as the top level element in the
included document. It will be removed when the document is included.

e.g. If I want to use xinclude to include a file containing the following fragments:

<ffff>
<gggg>hello</gggg>

</ffff>
<hhhh>

<iiii>there</iiii>
</hhhh>

I could use the xfragment element to enable it

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<xfragment>

<ffff>
<gggg>hello</gggg>

</ffff>
<hhhh>

<iiii>there</iiii>
</hhhh>

</xfragment>

41

The Available Panels

In this section I will introduce the various panels available in IzPack. The usage for most
is pretty simple and described right here. The more elaborate ones are explained in more
detail in the Advanced Features chapter or in their own chapter. The panels are listed
by their class name. This is the name that must be used with the classname attribute.
Please be aware that the classname is Case-Sensitive, meaning that if the case from the
install.xml and the founded class file differs the installation will break. In this last case,
the installer will Throw an IllegalArgumentException in the compiler if the declared
class name in the xml file differs in case from the founded class file.

HelloPanel

This panel welcomes the user by displaying the project name, the version, the URL as
well as the authors.

CheckedHelloPanel

This panel welcomes the user also by displaying the project name, the version, the URL
as well as the authors.

Additonal on windows the registry will be scanned for an entry which determines that
the product is already installed. If so, a dialog will be shown which ask whether to install
a second version of the product or not. If you use this panel do not forget to add the
registry feature into your installation.

InfoPanel and HTMLInfoPanel

This is a kind of ’README’ panel. It presents text of any length. The text is specified by
the (HTML)InfoPanel.info resource. Starting from IzPack 3.7.0, variables substitution
is allowed. To add an image to the HTMLInfoPanel you simply need to add a ressource
to your install.xml with an ID decided by you, then you can call this image by refering
it by this same ID.

In install.xml:

<resources>
<res src="logo.jpg" id="GHGHGH"/>
.....

and in file.html:

Note that variables are being substituted in HTMLINfoPanel (e.g., $JINSTALL_PATH
will be replaced with the installation path).

42

LicencePanel and HTMLLicencePanel

Note:* There is a mistake in the name - it should be LicensePanel. In France the word
is Licence ... and one of my diploma is a ’Licence’ so ...:* -)

Adding images to HTMLLicencePanel works exactly the same way as with HTMLIn-
foPanel.

These panels can prompt the user to acknowledge a license agreement. They block
unless the user selects the ’agree’ option. To specify the license agreement text you have
to use the ‘‘ (HTML)LicencePanel.licence‘‘ resource.

PacksPanel

Allows the user to select the packs he wants to install. This panel also allows grouping
of packs. Look at InstallationGroupPanel description to get more details.

ImgPacksPanel

This is the same as above, but for each pack a different picture is shown to the user. The
pictures are specified using the packImgId attribute for each pack in the installer XML.
The initial image will be the image of the first pack that has a packImgId. The image is
updated each time the user (de)selects a pack that has a packImgId. Of course it’s up to
you to specify an image for each pack in your installation with a unique packImgId. For
instance if you have 2 packs core and documentation (in this order), and you assign
both packs a packImgId that is identical to the pack’s name then the resource for core
will be core and the resource for documentation will be documentation. The initially
shown image will be the resource core. The supported image formats depend on what
your client’s JVM supports, but starting from J2SE 1.3, GIF , JPEG and PNG are
supported.

TreePacksPanel

This panel is very similar to PacksPanel, but instead of simple list of available packs,
the tree-like list is constructed. By using the parent attribute of pack element, one can
specify the hierarchy of the tree. This panel supports grouping just like PacksPanel
does.

example

<installation version="1.0">
(...)
<panels>

(...)
<panel classname="TreePacksPanel"/>
(...)

</panels>

43

<packs>
<pack name="Base"

required="yes">
(...)

</pack>
<pack name="Themes"

required="no">
(...)

</pack>
<pack name="Black"

parent="Themes"
required="no">
(...)

</pack>
<pack name="Red"

parent="Themes"
required="no">
(...)

</pack>
</packs>

</installation>

The result tree contains Base element with no children, and Themes with two children
named Black and Red.

TargetPanel

This panel allows the user to select the installation path. It can be customized with the
following resources (they are text files containing the path) :

• TargetPanel.dir.f where f stands for the family (mac, macosx, windows,
unix)

• TargetPanel.dir : the directory name, instead of the software to install name

• TargetPanel.dir.d where d is a “dynamic” name, as returned by the JavaTM
virtual machine. You should write the name in lowercase and replace the spaces
with underscores. For instance, you might want a different setting for Solaris
and GNU/Linux which are both Unix-like systems. The resources would be
TargetPanel.dir.sunos, TargetPanel.dir.linux. You should have a Unix-
resource in case it wouldn’t work though.

DefaultTargetPanel

The default installation directory is specified as in the TargetPanel (using identical names
(TargetPanel... not DefaultTargetPanel...), but will not allow the user to change the
installation path. It can be used when software must be installed in a specific location.

44

InstallPanel

You should always have this one as it launches the installation process !

XInfoPanel

A panel showing text parsed by the variable substitutor. The text can be specified
through the XInfoPanel.info resource. This panel can be useful when you have to
show information after the installation process is completed (for instance if the text
contains the target path).

FinishPanel

A ending panel, able to write automated installer information. For details see the chapter
on ’Advanced Features’.

SimpleFinishPanel

Same as FinishPanel, but without the automated installer features. It is aimed at
making the life easier for end-users who will never encounter the automated installer
extra feature.

ShortcutPanel

This panel is used to create desktop shortcuts. For details on using the ShortcutPanel
see the chapter ’Desktop Shortcuts’.

UserInputPanel

This panel allows you to prompt the user for data. What the user is prompted for is
specified using an XML file which is included as a resource to the installer.

CompilePanel

This panel allows you to compile just installed Java sourcecode. The details for the
compilation are specified using the resource CompilePanel.Spec.xml. The XML file has
the following format:

<compilation>
<global>
<compiler>
<choice value="$JAVA_HOME/bin/javac" />
<choice value="jikes" />

</compiler>
<arguments>
<choice value="-O -g:none" />

45

<choice value="-O" />
<choice value="-g" />
<choice value="" />

</arguments>
</global>
<jobs>
<classpath add="$INSTALL_PATH/src/classes/" />
<job name="optional name">
<directory name="$INSTALL_PATH/src/classes/xyz" />

</job>
<job name="another job">
<packdepency name="some package name" />
<classpath sub="$INSTALL_PATH/" />
<directory name="$INSTALL_PATH/src/classes/abc" />
<file name="$INSTALL_PATH/some/file.java" />

</job>
</jobs>

</compilation>

In theory, jobs can be nested but this has not been tested at all. A change to the
classpath within a job only affects this job and nested jobs. The classpath should be
specified before any files or directories.

The user can change the compiler to use and choose from some default compilation
options before compilation is started.

46

ProcessPanel

This panel allows you to execute arbitrary files after installation. The details for the
compilation are specified using the resource ProcessPanel.Spec.xml.

The XML file has the following format:

<processing>
<job name="do xyz">
<os family="windows" />
<executefile name="$INSTALL_PATH/scripts/xyz.bat">
<arg>doit</arg><arg>$variable</arg>

</executefile>
</job>
<job name="do xyz">
<os family="unix" />
<executefile name="$INSTALL_PATH/scripts/xyz.sh">
<arg>doit</arg><arg>$variable</arg>

</executefile>
</job>

</processing>

47

Each job may have an <os> attribute.
In addition to <arg> elements, the <executefile> element also accepts <env> ele-

ments to set variables in the environment of the target process. This can be useful if this
process requires some environment variables, such as its installation directory, to work
properly. An <env> element has the following syntax: <env>variable=value</env>.
Note the value supports variable substitution, for example: <env>MY_PRODUCT_HOME=$INSTALL_PATH</env>.

<executeclass> - Execute Java Classes

It is also possible to execute Java classes from this panel. Here’s what this feature author
(Alex Bradley) says:

> i’ve been able to work around my requirements by extending the ProcessPanelWorker
functionality to run user-specified classes. i’ve extended the DTD of the ‘‘ Process-
Panel.Spec.xml‘‘ to include a new element:

<executeclass name="classname">
<args..../>
</executeclass>

> i’ve also added a new sub-class of Processable called executeclass. This will run
a user-specified class in the context of the installer JVM with a single method :

run(AbstractUIProcessHandler handler, String[] args]);

> It can do everything i need and more. In particular, it allows me to write a process
extension and still be able to provide feedback to the user through the feedback panel,
and to add new functionality to the installer, after its been built.

To use the executeclass facility, you will need to create a jar file with your class and
then add it to the installer with the The Jar Merging Element.

<executeForPack> - Only execute the job for certain packs

This can be be used to run the job only if the pack is enabled. For example, the batch
file will if either the Sources or Executables packs are selected at install time.

<processing>
<job name="List files">
<executeForPack name="Sources"/>
<executeForPack name="Executables"/>
<os family="windows" />
<executefile name="$INSTALL_PATH\batch\ListFiles.bat" />
</job>
</processing>

48

<logfiledir> - Output of the processPanel saved to a log

New with version 3.7 is the possibility to tee output that is written to the ProcessPanel’s
textarea into an optional logfile. Using this feature is pretty much straightforward, you
only have to add a line in ProcessPanel.Spec.xml that will tell IzPack the location,
where the logfile should be stored.

Variable substitution is performed, so you can use $INSTALL_PATH as example.
The name of the logfile is not (yet) configurable but should fit in most cases. It will

be named

Install_V<$APP_VER>_<YYYY>-<MM>-<DD>_<hh>-<mm>-<ss>_<RandomId>.log

Here’s an example:

<processing>
<logfiledir>$INSTALL_PATH</logfiledir>
<job name="do xyz">
<os family="windows" />
<executefile name="$INSTALL_PATH/scripts/xyz.bat">
<arg>doit</arg><arg>$variable</arg>

</executefile>
</processing>

This will generate a logfile named e.g. Install_V1.3_2004-11-08_19-22-20_43423.log
located in $INSTALL_PATH.
ProcessPanelWorker will write all output that is directed to stdout and stderr to

this file if ProcessPanel.Spec.xml contains the logfiledir entry.
Please note that this one file is used for storing the complete output of all jobs and

not a file for each job that is run.

JDKPathPanel

This panel allows the user to select a JDK path. The variable JAVA HOME does not
point to a JDK, else to a JRE also the environment variable points to a JDK. This is
not a bug, this is the behavior of the VM. But some products needs a JDK, for that
this panel can be used. There is not only a selection of the path else a validation. The
validation will be done with the file JDKPath/lib/tools.jar. If JAVA HOME points to the
VM which is placed in the JDK, the directory will be used as default (JAVA HOME/..).
If there is the variable

JDKPathPanel.skipIfValid

defined with the value “yes”, the panel will be skiped if the path is valid. Additional
it is possible to make a version control. If one or both variables

JDKPathPanel.minVersion
JDKPathPanel.maxVersion

49

are defined, only a JDK will be accepted which has a version in the range of it. The
detection is a little bit pragmatically, therefor it is possible, that the detection can fail
at some VMs. The values in the install.xml should be like

<variables>
<variable name="JDKPathPanel.minVersion" value="1.4.1" />
<variable name="JDKPathPanel.maxVersion" value="1.4.99" />
<variable name="JDKPathPanel.skipIfValid" value="yes" />

</variables>

If all is valid, the panels isValidated method sets the variable

JDKPath

to the chosen path. Be aware, this variable exist not until the JDKPanel was quitted
once. At a secound activation, the default will be the last selection.

SelectPrinterPanel

This panel will look at the local printers installed and propose a list box with all of them.
Once chosen, the variable $SELECTED PRINTER is set to the user choice.

DataCheckPanel

DataCheckPanel is not for inclusion in an actuall install, but is a debugging resource
for developers writing custom panels or code to be included in IzPack. It creates a list
of all the variables in InstallData, their values and a list of all packs, indicating which
are selected. This list is printed to the console and appears in a scrollable text area on
the panel. Put the panel in wherever you want to see any variables in InstallData or a
listing of the packs with a line like this in the <panels> section of install.xml:

<panel classname=“DataCheckPanel” />
It will automatically give you a full list of all the variables and packs whenever the

panel is made active.

SummaryPanel

This panel gives a summary of all shown panels. The best place for it is just infront of the
InstallPanel. Normaly it contains a warning that this is the last panel before installation.
The panel contains a scrollable HTML text area to display the summary. The informa-
tions are collected from each panel by calling the methods getSummaryCaption and
getSummaryBody. getSummaryCaption is implemented in IzPanel with a panel name
default text. getSummaryBody has to be implemented in all panels which should be pre-
sented in the summary. If the secound method is not implemented, no summary of this
panel will be shown.

Additional it is possible to log the contents of the summary panel into a HTML file.

50

InstallationGroupPanel

This Panel groups the pack together. A panel which displays the available installGroups
found on the packs to allow the user to select a subset of the packs based on the pack
installGroups attribute. This panel will be skipped if there are no pack elements with
an installGroups attribute. For example

<installation version="1.0">
(...)
<panels>

(...)
<panel classname="InstallationGroupPanel"/>
<panel classname="PacksPanel"/>
(...)

</panels>

<packs>
<pack name="Base"

installGroups="Group1"
required="yes">
(...)

</pack>
<pack name="Docs"

installGroups="Group1,Group2"
required="no">
(...)

</pack>
<pack name="Sources"

installGroups="Group3,Group2"
required="no">
(...)

</pack>
</packs>

</installation>

In above example when InstallationGroupPanel is displayed, it contains three radios
named Group1, Group2 and Group3. Depending on what user selects, the respective
Packs will be displayed in PacksPanel. InstallationGroupPanel will look for a descrip-
tion corresponding to the key “InstallationGroupPanel.description.Group1”, “Installa-
tionGroupPanel.description.Group2” etc in installation langpacks and variables and dis-
plays this description for each of the Group i.

You may also define a sortKey in the variables section of the installer.xml to define
an alternative sorting. The default sorting is based on the Group Name.

Here is an example for alternative sorting of groups:

51

(...)
<variables>

(...)
<variable
name="InstallationGroupPanel.sortKey.Group2" value="A"/>
<variable
name="InstallationGroupPanel.sortKey.Group1" value="B"/>
<variable
name="InstallationGroupPanel.sortKey.Group3" value="C"/>

</variables>
(...)

By default, your group name (and description) are displayed as-is in the installer. If
you want them to be localized, add localized names to your packsLang.xml resources.
The string ID has to be InstallationGroupPanel.group.‘‘‘group name‘‘.

Here is an example to localize groups into French (these lines have to be put in your
packsLang.xml_fra resource) :

<str id="InstallationGroupPanel.group.Core" txt="Noyau de l’application" />
<str id="InstallationGroupPanel.description.Core" txt="Fichiers principaux, indispensables au fonctionnement de l’application" />
<str id="InstallationGroupPanel.group.Samples" txt="Fichiers d’exemple" />
<str id="InstallationGroupPanel.description.Samples" txt="Fichiers d’exemples" />

If you want to add html markup to those strings, add .html at the end of the string
id (after the group name).

UserPathPanel

This panel allows the user to select a path similar to the installation path. Like the
installation path, this panel will allow the directory to be created if it does not already
exist. It can also be pre-loaded with a path and set to only display if a certain pack is
selected using the following variables:

<variable name="UserPathPanelVariable" value="@{default.dest.dir.sql}"/>
<variable name="UserPathPanelDependsName" value="Install Database Server"/>

Final path selection can be accessed using the variable “UserPathPanelVariable”.
Messages for the UserPathPanel can be customized by creating a custom lang pack

and overriding the following values (attribute values wrapped for readability):

<str id="UserPathPanel.required" txt="The chosen directory should exist."/>
<str id="UserPathPanel.info" txt="Select the path: "/>
<str id="UserPathPanel.browse" txt="Browse"/>

52

<str id="UserPathPanel.exists_warn" txt="The directory already exists!
Are you sure you want to install here and possibly overwrite existing files?"/>

<str id="UserPathPanel.empty_target" txt="You have not specified a target
location! Is this correct?"/>

<str id="UserPathPanel.createdir" txt="The target directory will be created: " />
<str id="UserPathPanel.nodir" txt="This file is not a directory! Please

choose a directory!"/>
<str id="UserPathPanel.notwritable" txt="This directory can not be written!

Please choose another directory!"/>

Advanced features

Apache Ant integration

IzPack can be easily integrated inside an Ant build process. To do so you first need to
tell Ant that you would like to use IzPack:

<!-- Allows us to use the IzPack Ant task -->
<taskdef name="IzPack" classpath="${basedir}/lib/compiler.jar"

classname="com.izforge.izpack.ant.IzPackTask"/>

If you want to use the standalone compiler (and therefore don’t need an IzPack in-
stallation for building), the task needs to be defined as follows:

<!-- Allows us to use the IzPack Ant task -->
<taskdef name="IzPack" classpath="${basedir}/lib/standalone-compiler.jar"

classname="com.izforge.izpack.ant.IzPackTask"/>
Don’t forget to add compiler.jar or standalone-compiler.jar to the classpath of the Ant process.

Then you can invoke IzPack with the IzPack task which takes the following parameters:

• ’input’: the XML installation file. The installation can be specified as an external
file, or embedded using a config child element (see section 3.2).

• ’output’: the output jar installer file

• ’installerType’: optional. standard or web. If web, the <webdir> attribute must
be specified in the input file (see section 3.7). Used to force creation of a standard
installer when the <webdir> attribute has been used.

• ’baseDir’: the base directory to resolve the relative paths

• ’IzPackDir’: the IzPack home directory. Only necessary if you do not use the
standalone compiler.

Here is a sample of the task invocation:

53

<!-- We call IzPack -->
<echo message="Makes the installer using IzPack"/>
<IzPack input="${dist.dir}/IzPack-install.xml"

output="${dist.dir}/IzPack-install.jar"
installerType="standard"
basedir="${dist.dir}"
IzPackDir="${dist.dir}/"/>

Embedding the installation file using a config element

Instead of using the ’install’ attribute to specify an external installation document, you
can embed the installation config as a child of the IzPack task using a config child element
with a CDATA section. For example:

<property name="jboss.home.url" value="http://www.jboss.com/" />
...

<!-- Call IzPack with an embedded install using the config element -->
<IzPack output="${dist.dir}/IzPack-install.jar"

installerType="standard"
basedir="${dist.dir}"
IzPackDir="${dist.dir}/">
<config><![CDATA[

<installation version="1.0">
<info>

<appname>JBossAS</appname>
<appversion>4.0.2</appversion>
<appsubpath>jboss-4.0.2</appsubpath>
<authors>

<author name="JBoss Inc." email="sales@jboss.com"/>
</authors>
<url>@{jboss.home.url}</url>
<javaversion>1.4</javaversion>

</info>
...

]]></config>
</IzPack>

Property references of the form

@{x}

are replaced by the associated x ant property if it is defined.

54

System properties as variables

All system properties are available as ’$SYSTEM <variable>’ where ’<variable>’ is the
actual name but with all separators replaced by ’ ’. Properties with null values are never
stored.

Examples:
’$SYSTEM java version’ or ’$SYSTEM os name’

Automated Installers

When you conclude your installation with a FinishPanel, the user can save the data for
an automatic installation. With this data, he will be able to run the same installation on
another similar machine. In an environment where many computers need to be supported
this can save a lot of time.

So run once the installation on a machine and save your automatic installation data
in auto-install.xml (that’s just a sample). Then put this file in the same directory as the
installer on another machine. Run it with:

java -jar installer.jar auto-install.xml

It has reproduced the same installation :-)

Picture on the Language Selection Dialog

You can add a picture on the language selection dialog by adding the following resource
: ’installer.langsel.img’. GIF, JPEG and PNG pictures are supported starting from J2SE
1.3.

Picture in the installer

It is possible to specify an optional picture to display on the left side of the installer. To
do this, you just have to define a resource whose id is ’Installer.image’. For instance

<res id="Installer.image" src="nice-image.png" />

will do that. If the resource isn’t specified, no picture will be displayed at all. GIF,
JPEG and PNG pictures are supported starting from J2SE 1.3.

You can also give a specific picture for a specific panel by using the ’Installer.image.n’
resource names where is the panel index. For instance if you want a specific picture for
the third panel, use ’Installer.image.2’ since the indexes start from 0.

Modifying the GUI

There are some options to modify the graphic user interface. Most of them are managed
with key/value pairs of the element ’<modifier>’ which will be located in the element
’<guiprefs>’ in the installation description file.

55

Modifying Language Selection Dialog

Additional to the picture in the language selection dialog it is possible to modify flags
and the type of showing the language name. Following different views (without an images
to reduce space).

Standard language selection dialog

Alternative language selection dialog

• ’useFlags’: possible are “yes” or “no”. Default is “yes”. If it is set to “no”, no flag
will be displayed in the language selection dialog. For “no” it is recommended
to define also ’langDisplayType’ other then “iso3”.

• ’langDisplayType’: possible are “iso3”, “native” and “default”. Default is “iso3”.
With “iso3” the text for a language will be displayed as ISO 639-2:1998 code.
With “native” the notation of the language will be used if possible, else the
notation of the default locale. Using “default” will be presented the language in
the notation of the default locale of the VM.

Modifying IzPack Panels

There are some graphic elements and behavior which are preferred by some people and
deprecate by other. The following keys are related to the whole installation (all panels).

56

• ’useButtonIcons’: possible are “yes” or “no”. Default is “yes”. If it is set to “no”,
all buttons which are created via the ButtonFactory contains no icon also a icon
id was submitted. Directly created buttons are not affected.

• ’useLabelIcons’: possible are “yes” or “no”. Default is “yes”. If it is set to “no”,
all labels which are created via the LabelFactory contains no icon also a icon id
was submitted. Directly created labels are not affected.

• ’layoutAnchor’:layout anchor for IzPanels. Valid are“NORTH”,“NORTHWEST”,
“SOUTHWEST”, “SOUTH” and “CENTER”. Only panels which are using the
layout helper of IzPanels are supported. These are not all standard panels. At
developing custom panels it is recommended to use the layout helper with an
IzPanelLayout. Note: The anchor definition will be used for all panels!

• Gaps: there are defined different gaps between different components of a IzPanel
if using IzPanelLayout. The gaps can be set also via the element ’<modifier>’
of ’<guiprefs>’. It is possible to declare different values for X and Y axis. This
will be determined in the key word name. X Gaps are insert after Y gaps under
the control for which the gap was declared. Following key words are defined:

– ’labelXGap | labelYGap’: gap in pixel between two labels in X or Y
direction.

– ’textXGap | textYGap’: gap in pixel between two text fields.
– ’controlXGap | controlYGap’: gap in pixel between two controls other

than label or textfield.
– ’paragraphYGap’: gap in pixel for a paragraph. A paragraph will be

created in the panel source for controls which should be separated.
paragraphXGap is declared, but not used.

– ’labelToTextXGap | labelToTextYGap’: gap in pixel between a label
(left or top) and a text field (right or bottom).

– ’labelToControlXGap | labelToControlYGap’: gap in pixel between a
label (left or top) and a control other than a label or a textfield.

– ’textToLabelXGap | textToLabelYGap’: gap in pixel between a text
field (left or top) and a label.

– ’controlToLabelXGap | controlToLabelYGap’: gap in pixel between a
control other than a label or a text field and a label.

– ’controlToTextXGap | controlToTextYGap’: gap in pixel between a con-
trol other than a label or a text field and a text field.

– ’textToControlXGap | textToControlYGap’: gap in pixel between a text
field and a control other than a label or a text field .

– ’firstYGap’: gap in pixel between the top border and the first control.
– ’filler[N]XGap | filler[N]YGap’: gap in pixel created by the layout man-

ager. Filler are used by some panels. [N] is a number between 1 and 5
to allow to use different filler e.g. filler3XGap or filler1YGap.

57

– ’allXGap | allYGap’: gap in pixel between all controls in X or Y direc-
tion. If this is declared all gaps for which no own declaration exists gets
this value. If a gap has an own declaration this will be used instead.

• ’layoutYStretchType | layoutXStretchType’: the IzPanelLayout manager al-
lows to declare stretch factors for controls. This means, that a control will
be stretched if there is place in the line. The amount of stretching will be de-
termined by the stretch factor. But what to do if the hole stretch factor for a
line or column is not 1.0? To determine this these settings are exist. Valid val-
ues are “RELATIVE”, “ABSOLUTE” and “NO”. With “NO” no stretch will be
performed. with “RELATIVE” the values are normalized, with “ABSOLUTE”
the values will be used as they are (may be a part will be clipped if the sum is
greater than 1.0).

• ’layoutFullLineStretch | layoutFullColumnStretch’: as described there are con-
trols which should be stretched. Beside fixed values there are the symbolic val-
ues FULL LINE STRETCH and FULL COLUMN STRETCH which are com-
puted at layout. E.g. MultiLineLabels has this stretch factor for x direction. But
what to do if a centered layout is chosen? With a control like this the lines will
be stretch to the hole size. With this settings it can be changed. E.g. a factor
of 0.7 creates a nice centered layout. The default is 1.0, valid are 0.0 up to 1.0.

It is possible to use an alternatively frame title. Normally the title has the aspect
“IzPack - Installation of ” + ’$APP NAME’. If the langpack key ’installer.reversetitle’
is defined, the value of that key will be used instead of the key ’installer.title’. There is
no string added, but it is possible to use IzPack variables. The third heading example
contains such a alternatively frame title. It is only possible to use predefined variables
like ’$APP NAME’ because the title will be created before the frame will be shown. It
is common to use the name of the installation toolkit in the frame title.

Using a Separated Heading Panel

Some standard panels have headings (e.g. ShortcutPanel). These headings are integrated
in the IzPanel. In opposite to this following heading will be displayed in a separated panel
potential for all panels with the same design. There is no need to modify existent java
classes else declaration of some key/value pairs are enough.

There can be one real head and zero or more info lines. The headline will be written
bold, the font size can be changed. Info lines will be indented and written with the normal
used font. The heading message has to be written into the langpack (or custom langpack)
file with the key ’<panel class name>.headline’. Examples can be seen in eng.xml. May
be the entries for standard panels are not present in other languages. Messages for info
lines have the key ’<panel class name>.headinfo<info line number>’. First info line has
number zero. If no or empty headline messages will be declared in the chosen language no
heading panel will be shown. This behavior can be used to suppress heading for special
panels.

58

It is also possible to declare head and info lines additional dependent on the ’panelid’.
The result is, that it is possible to declare different messages for panels which are shown
more than one time (e.g. the UserInputPanel. In this case the key for heading is

<panel class name>.headline.<panelid>

and for info lines

<panel class name>.headinfo<info line number>.<panelid>

Panelids are declared in ’ELEMENT %lt;panel>’. See The Panels Element ’<panels>’
. The standard strings are declared in the standard langpack file. For customized panels
it is common to write the string into the custom langpack (see The Internationalization
of custom panels. If (as example) in install.xml was following written:

<panels>
...
<panel classname="UserInputPanel" id="one"/>
<panel classname="UserInputPanel"id="two"/>
...

</panels>

Then the messages can be declared in ’CustomLangpack.xml eng’ like

<langpack>
...
<str id="UserInputPanel.headline.one" txt="User Data one"/>
<str id="UserInputPanel.headline.two" txt="User Data two"/>
<str id="UserInputPanel.headinfo0.one" txt="Info 1 one"/>
<str id="UserInputPanel.headinfo1.one" txt="Info 2 one"/>
<str id="UserInputPanel.headinfo0.two" txt="Info 1 two"/>
<str id="UserInputPanel.headinfo1.two" txt="Info 2 two"/>
...

<langpack>

It is possible to place an icon on the right side of the heading (see below to display on
left side). To do this a simple resource entry will be needed:

<resources>
...
<res id="Heading.image" src="[my path in the source tree]"/>
...

</resources>

There are some guiprefs modifier keys to use and modify heading (see above). Addi-
tionally it is possible to count the general not hidden panels in the heading or navigation
panel.

59

• ’useHeadingPanel’: General switch for heading. If this key does not exist or does
not have the value “yes” no heading panel will be shown.

• ’headingImageOnLeft’: Option to allow displaying the heading image on the left
of the header instead of the default (right side). Only valid if heading panel is
used.

• ’useHeadingForSummary’: In the language files there are entries for the heading
text (’[Panel name].headline’) and the summary caption (’[Panel name].summaryCaption’).
If this modifier is set to “yes”, the text of the heading will be also used for the
summary caption.

• ’headingLineCount’: Number of heading lines. If no info lines should be shown
the value should be one (not zero).

• ’headingFontSize’: A float value used as multiplier for the standard font size.

• ’headingBackgroundColor’: Background color of the heading panel as integer.
Often used is 0x00ffffff (white).

• ’headingForegroundColor’: Font color of the heading panel as integer. Often
used is 0x00ffffff (white).

• ’headingPanelCounter’: Draw a panel counting. Possible values are “text” or
“progressbar”. inHeading the progressbar will be not the best choice.

• ’headingPanelCounterPos’: Declares where the counter will be shown. Possible
are “inHeading” or “inNavigationPanel”. If “inNavigationPanel” is chosen, the
panel counter can be used also no heading was selected.

60

Normal look of an IzPack frame (TargetPanel)

Key/value pairs to create IzPack installation with heading, no button and label icons
and a panel text counter in the heading panel.

<guiprefs width="600" height="480" resizable="no">
<modifier key="useButtonIcons" value="no"/>
<modifier key="useLabelIcons" value="no"/>
<modifier key="labelGap" value="2"/>
<modifier key="layoutAnchor" value="NORTHWEST"/>
<modifier key="useHeadingPanel" value="yes"/>
<modifier key="headingImageOnLeft" value="yes"/>
<modifier key="headingLineCount" value="1"/>
<modifier key="headingFontSize" value="1.5"/>
<modifier key="headingBackgroundColor" value="0x00ffffff"/>
<modifier key="headingPanelCounter" value="text"/>
<modifier key="headingPanelCounterPos" value="inHeading"/>

</guiprefs>

61

IzPack frame (TargetPanel) with heading panel and a text counter in the heading panel
with panel image.

Changed resources and langpack keys to create IzPack installation with alternatively
frame title, heading, no button and label icons and a text counter in the heading panel.

In install.xml

<installation version="1.0">
...
<resources>
...
<res src="border4.png" id="Installer.image.3"/> REMOVED
...

</resources>
</installation>

Add in ’<ISO3>.xml’ or ’CustomLangpack.xml <ISO3>’

<langpack>
...

62

<str id="installer.reversetitle" txt="$APP_NAME $APP_VER - IzPack Wizard "/>
...

</langpack>

IzPack frame (TargetPanel) with heading panel and a text counter in the heading panel
with alternative frame title, no panel image.

Changed key/value pairs to create IzPack installation with heading, no button and
label icons and a panel progressbar counter in the navigation panel.

Key/value pairs for modifying IzPack GUI (references for panel images removed):

<guiprefs width="640" height="480" resizable="no">
<modifier key="useButtonIcons" value="no"/>
<modifier key="useLabelIcons" value="no"/>
<modifier key="layoutAnchor" value="NORTHWEST"/>
<modifier key="labelGap" value="2"/>
<modifier key="useHeadingPanel" value="yes"/>
<modifier key="headingLineCount" value="1"/>
<modifier key="headingFontSize" value="1.5"/>
<modifier key="headingBackgroundColor" value="0x00ffffff"/>

63

<modifier key="headingPanelCounter" value="progressbar"/>
<modifier key="headingPanelCounterPos" value="inNavigationPanel"/>

</guiprefs>

IzPack frame (TargetPanel) with heading panel and a progressbar counter in the navi-
gation panel without panel image.

Alternative Cancel Dialog

The cancel dialog will be shown if the cancel button or the close button of the frame
was pushed. In the standard dialog the title contains the question and the message an
affirmation. In other dialogs often the title is a common heading and the question will be
called in the dialog as message. The standard behavior will be modified if the messages
’installer.quit.reversemessage’ and ’installer.quit.reversetitleare’ declared.

Add in ’<ISO3>.xml’ or ’CustomLangpack.xml <ISO3>’

<langpack>
...
<str id="installer.quit.reversemessage" txt="Are you sure you want to cancel installation?"/>
<str id="installer.quit.reversetitle" txt="$APP_NAME $APP_VER"/>

64

...
</langpack>

Standard cancel dialog.

Alternative cancel dialog.

Logging the Installation

Logging was made as co-product at implementing other features. There was no
common design for it. Therefor there is no one way to made logging of any kind
else for each group a different logging stuff exist. Not nice, but reality.

1. Debug Information

There is a rudimentary debug capability in IzPack. The class ’com.izforge.IzPack.util.Debug’
is used by some other classes to write debug information on ’stdout’. The class
can be used by custom panels or actions or other custom classes. To activate
it, add ’-DTRACE=TRUE’ in front of ’-jar’ of the installer call.

2. Summary of Panels

There is a summary panel which shows some information of previous shown
panels. The same contents can be written to a summary log file.

3. Logging of Installed File Set

The files which are installed are logged into the uninstaller jar file to be used
at uninstallation. The contents can be also duplicated into a logfile.

4. Logging of the Process Panel

65

The process panel logs information of each performed process in a scrollable
text area. The contents can be duplicated into a logfile where the used direc-
tory can be selected (but not the logfile name).

5. Logging of Ant Actions

It is possible to perform ant actions with the ’AntActionInstallerListener’.
The grade of logging and the path of a logfile can by determined.

Web Installers

The web installers allow your users to download a small installer that does not contain
the files to install. These files will be downloaded from an HTTP server such as Apache
HTTPD. If you have many optional packs, this can save people’s resources. Its very
easy: people download a small Jar file containing the installer, they launch it and choose
their packages. Then the installer will get the required packages from individual Jar files
located on a server, only downloading those required. It’s that simple.

To create a web installer, add the ’<webdir>’ element to the <info> element. The
text must be a valid, fully qualified URL for a directory on the web server.

<info>
<appname>Super extractor</appname>
<appversion>2.1 beta 6</appversion>
<url>http://www.superextractor.com/</url>
<webdir>http://www.superextractor.com/download</url>

</info>

You can force creation of a standard installer even if ’webdir’ is specified, by specifically
creating a standard installer from the command line invocation or ant task.

When installing, if the user is behind a firewall, attempting download the jar files may
fail. If this happens, the user will be prompted to enter the name host name and port of
their firewall.

You may password protect the files using mechanisms provided by your web server,
IzPack will prompt for a password at install time, when required.

More Internationalization

Special resources

IzPack is available in several languages. However you might want to internationalize some
additional parts of your installer. In particular you might want this for the ’InfoPanel’
and ’LicencePanel’. This is actually pretty easy to do. You just have to add one resource
per localization, suffixed with the ISO3 language code. At runtime these panels will try
to load a localized version.

For instance let’s suppose that we use a ’HtmlInfoPanel’. Suppose that we have it in
English, French and German. We want to have a French text for french users. Here we
add a resource pointing to the French text whose name is ’HtmlInfoPanel.info fra’. And

66

that’s it! English and German users (or anywhere other than in France) will get the
default text (denoted by ’HtmlInfoPanel.info’) and the French users will get the French
version. Same thing for the other Licence and Info panels.

To sum up: add ’ <iso3 code>’ to the resource name for ’InfoPanel’, ’HtmlInfoPanel’,
’LicencePanel’ and ’HtmlLicencePanel’.

Packs

Thanks to Thorsten Kamann, it is possible to translate the packs names and descriptions.
To do that, you have to define a special identifier in the elements of the XML installation
file and add the related entries in the suitable langpacks. For instance if you have the
following XML snippet:

<pack name="core" id="core.package" ...>
<description/>

</pack>

then the related entries of the langpacks will look like this:

<str id="core.package" txt="Core Package"/>
<str id="core.package.description" txt="The core package provides

Desktop Shortcuts

(by Elmar GROM and Marc EPPELMANN)

Defining Shortcuts

Introduction

On todays GUI oriented operating systems, users are used to launching applications,
view web sites, look at documentation and perform a variety of other tasks, by simply
clicking on an icon on the desktop or in a menu system located on the desktop. Depending
on the operating system these icons have different names. In this context we will refer
to them collectively as shortcuts.

Apart from actually placing an application on the target system, users routinely expect
an installer to create the necessary shortcuts for the application as well. For you as
application developer, this means that for a professional appearance of your product you
should also consider creating shortcuts.

In contrast to the general specification of an IzPack installer, the specification of
shortcuts in IzPack requires a little more effort. In addition, some of the concepts are
a bit more complex and there are some operating system specific issues to observe.
Fortunately, you only need to worry about operating system specifics if you want to
deploy your application to multiple different operating systems. In any case, it will pay
off to spend some time to study this documentation and the example spec files before
you start to implement your own shortcuts.

67

At the time of writing this Chapter the current IzPack Version 3.7.0-M3 is only capable
to creating shortcuts on

1. Microsoft Windows, and

2. Unix and Unix-based operating systems (like Linux), which use the X11 GUI-
System and ‘ FreeDesktop.org‘ based shortcut handling (such as KDE and
Gnome).

Other operating or GUI systems, such as MacOS X are not supported. However, there
is a special UI-variant that automatically pops up on unsupported systems. It informs
the user about the intended targets of your shortcuts and allows the user to save this
information to a text file. While this is not an elegant solution, at least it aids the user
in the manual creation of the shortcuts.

There is no support from the IzPack project of this feature for Windows 95, Windows 98
and Windows ME. Please check the patches at http://jira.codehaus.org/browse/IZPACK-
58 if you need to support those platforms.

If you would like to review what an end user would see if the target operating system
is not supported, you can do the following. Simply place the tag <notSupported/> in
the spec file. This tag requires no attributes or other data. It must be placed under
<shortcuts>, just like the individual shortcut specifications. Be sure to remove this tag
before getting your application ready for shipment.

We expect other operating systems to be supported in the near future and as always,
contributions are very welcome. At present someone is actively working on Mac support.

What to Add to the Installer

There are some things that you have to add to your installer to enable shortcut creation.
Obviously you need to add the panel responsible for creating shortcuts. This panel is
aptly enough called ShortcutPanel. However, in order for the ShortcutPanel to work
properly a number of additional items are required. These must be added manually to
the installer, as all other resourcs, since the front-end will be rewritten. In this chapter
we will explain which of these items are required and for what reason.

First, we would like to discuss items that are supplied with IzPack and only need to
be added to the installer. After that, we move on to the things you have to prepare
yourself before you can add them. The way in which shortcuts are created varies widely
among operating systems. In some cases it is possible to do this with pure Java code,
while other systems -such as MS- Windows- require native code to accomplish this task.
On the other side, the current implementation, which creates shortcuts on Unix based
systems needs no native library at all, since it works with ’these’ pure Java code. The
native library required for the Windows operating systems are supplied with IzPack is
called ShellLink.dll. Note: They will not be automatically added to your installer file.
You need to list them yourself in the XML file for the installer. A describtion how to do
this follows in the next section.

68

http://jira.codehaus.org/browse/IZPACK-58
http://jira.codehaus.org/browse/IZPACK-58

Native libraries can be added to the installer by using the <native> tag. To add
the ShellLink.dll, you just have to add the following line to the installer XML file:
<native type="izpack" name="ShellLink.dll"/> For more details about the use of
the <native> tag see the chapter about the format of the XML file.

You have also to add an extra specification file for each platform family to enable
shortcut creation on these platforms. At least one (the default file) is required by the
shortcut panel. The format of all spec files is XML and they must be added to the
installer as a resource. The source name of this specification does not matter, how-
ever its resource name (also called id or alias) when added to the installer must be
(prefix)+shortcutSpec.xml. At this release, there are only two prefixes supported:
“Win” for the Windows family and “Unix” for all Unixes. If the prefix is ommited the
shortcut panel searches for a named resource: ‘‘ shortcutSpec.xml‘‘. This is the default
resource name. As the default resource name will be used on Windows platforms, the
"Win_shortcutSpec.xml" can be ommited. Hint: If the shortcut panel does not find one
of these named resources, it will never appears. So, do not use different resource names
and do not add a path to these.

ShortcutSpecs can be localized, see “Localizing shortcuts” below.
Example

<res src="C:\MyDocuments\Installer\default_shortcut_specification.xml"
id="shortcutSpec.xml"/>

<res src="C:\MyDocuments\Installer\unix_shortcut_specification.xml"
id="Unix_shortcutSpec.xml"/>

Why use different shortcut spec files?

1. The Target filenames are most different.(batch files on Windows vs. shell
scripts on Unix.)

2. The Icon file formats are different. ICOs on Windows-, PNGs on Unix- plat-
forms.

3. The Target locations can be different.

4. If your installer is localized, your users sure will expect their shortcuts names
and descriptions to be as well. Moreover, some paths can be different when
OS are localized (My Documents becomes Mes Documents on Windows in
french for example). See “Localizing shortcuts” below.

This is the simple reason.

Why Native Code to do the Job on Windows?

by Elmar
This little chapter is not strictly part of the documentation but i have been asked this

question sufficiently often that i think it’s worth explaining right here. It is certainly a

69

natural question to ask. After all IzPack is an application completely written in Java and
primarily targeted for the installation of Java based programs. So why wouldn’t we try
to keep everything pure Java and avoid the use of native code altogether? There must
be some personal preference of the developer hidden behind this approach you might
think. Well, not really, but i admit at first it seems quite feasible to write it all in Java.
On virtually any operating system or GUI surface around, Shortcuts are simply files on
the local file system. Files can be created and accessed directly from within Java, so why
should there be a need for using native code?

Well, it turns out that just creating a file is not good enough, it also needs to have the
right content. Shell Links as they are called in Windows land are binary files. i actually
managed to find documentation on the format. Naturally this was hacker data, you won’t
get this sort of thing from Microsoft (by the way: thanks a lot to Jesse Hager for a smash
job!). Armed with this information i tried to create these files myself in Java. The problem
was that the documentation was not entirely accurate and had some gaps as well. i tried
for over a month to get this to work but finally i had to give up. Even if i would have
succeeded, it would have been a hack, since a shell link requires some information that
is impossible to obtain from within Java. Usually you can successfully create a shell link
by only filling in the bare minimum information and then ask Windows to resolve the
link. Windows then repairs the shell link. Unfortunately this was only the beginning,
soon i encountered a host of other problems. For one thing, the installer needs to know
the correct directories for placing the links and it turns out they are named differently
in different countries. In addition, there are ways of manually modifying them, which
some people might actually have done. The only way to place the shortcut files reliably is
through accessing the Windows Registry. Naturally, this operation also required native
code. Same thing with asking Windows to resolve the link... On the bottom line, at every
step and turn you run into an issue where you just need to use native code to do the
trick. So i decided that i would do it the proper way all the way through. That is in a
nutshell the reason why i used native code to create shortcuts on MS-Windows.

As i am writing this i am at work with a friend to replicate this work for the Mac
and it looks very much like we need to take the same approach there as well. On the
various Unix GUIs on the other hand, we are lucky that we can do the job without native
libraries.

The Shortcut Specification

As we say above, the specification for shortcuts is provided to the ShortcutPanel in the
XML fileformat. At the time of this writing (for IzPack version 3.7.0-M3) the front-end
will be rewritten. Until these work is in progress you have to write the specification files
manually. For your convenience, there are two annotated sample specification files in the
sample subdirectory of your IzPack installation. At the beginning you might want to
experiment with these files.

Both specification files have one root element called <shortcuts>. This root elements
recognizes 3 different child elements: <programGroup>, <skipIfNotSupported/> and
<shortcut>.

70

<skipIfNotSupported/> can be used to avoid the panel to show the alternative UI
which shows the shortcut information that would have been created on a system that
supports it. In other words, using this tag will make the panel be silent on non-supported
systems. The default is to show the alternative UI.

The <programGroup> tag allows you to specify the name of the menu, or more precise,
the folder in which the shortcuts will be grouped. The exact location and appearance of
the program group depends on the specific target system on which the application will
be installed, however you can partially control it. Please note that <programGroup> may
only appear once in the specification. If more than one instance occurs, only the first one
will be used. This tag requires two attributes: defaultName and location. defaultName
specifies the name that the group menu should have on the target system. You should be
aware that the ShortcutPanel will present this name to the user as a choice. The user can
then edit this name or select a group that already exists. As a result, there is no guarantee
that the actual name of the program group on the target system is identical with your
specification. location specifies where the group menu should show up. There are two
choices: applications and startMenu. If you use applications, then the menu will be
placed in the menu that is ordinarily used for application shortcuts. applications is
recommended for Unix shortcuts. If you use startMenu, the group menu will be placed
at the top most menu level available on the target system. Depending on the target
system, it might not be possible to honor this specification exactly. In such cases, the
ShortcutPanel will map the choice to the location that most closely resembles your choice.
Unix shortcuts do not need to support the startMenu, because the applications menu
is already on the highest level. This means this has no affect on thess platform.

For each shortcut you want to create, you have to add one <shortcut> tag. Most
details about the shortcut are listed as attributes with this tag. The following sections
describe what each attribute does, which attributes are optional and which ones are
required and what the values are that are accepted for each of the attributes. Note that
all attributes that have a yes/no choice can also be omitted. Doing so has the same effect
as using a value of no. The shortcut attributes can be divided into two groups

• attributes that describe properties of the shortcut

• attributes that define the location(s) at which a copy of the shortcut should be
placed.

The following attributes are used to define location:

• programGroup

• desktop

• applications

• startMenu

• startup

71

Shortcut Attributes

There are three classes of attributes. Some are required, most are completely optional
and some are semi-optional. The set of semi-optional attributes are all the attributes used
to define the location of a shortcut. These are semi- optional because for any individual
one it is your choice if you want to include it or not. However they are not completely
optional. You must specify at least one location. If all were omitted, the instruction would
essentially tell the panel that a copy of this shortcut is to be placed at no location. In
other words no copy is to be placed anywhere.

name - required
The value of this attribute defines the name that the shortcut will have. This is the

text that makes up the menu name if the shortcut is placed in a menu or the caption
that is displayed with the shortcut if it is placed on the desktop.

target - required
The value of this attribute points to the application that should be launched when the

shortcut is clicked. The value is translated through the variable substitutor. Therefore
variables such as $INSTALL_PATH can be used to describe the location. You should be
aware that the use of this tag is likely to change once other operating systems
are supported.

commandLine - optional
The value of this attribute will be passed to the application as command line. i rec-

ommend to work without command line arguments, since these are not supported by
all operating systems. As a result, your applications will not be portable if they depend
on command line arguments. Instead, consider using system properties or configuration
files.

workingDirectory - optional
This attribute defines the working directory for the application at the time it is

launched. i would recommend some caution in relying on this too heavily if your ap-
plication should be portable, since this might not be supported by all operating systems.
At this time i don’t have enough information to make a definite statement one way or
the other. The value is translated through the variable substitutor. Therefore variables
such as $INSTALL_PATH can be used to describe the directory.

description - optional
The value of this attribute will be visible to the user when a brief description about

associated application is requested. The form of the request and the way in which this
description is displayed varies between operating systems. On MS-Windows the descrip-
tion is shown as a tool tip when the mouse cursor hovers over the icon for a few seconds.
On some operating systems this feature might not be supported but i think it is always
a good idea to include a brief description.

iconFile - optional
The value of this attribute points to the file that holds the icon that should be dis-

played as a symbol for this shortcut. This value is also translated through the variable
substitutor and consequently can contain variables such as $INSTALL PATH. If this
attribute is omitted, no icon will be specified for the shortcut. Usually this causes the

72

OS to display an OS supplied default icon. The use of this attribute is also likely to
change once other operating systems are supported. Read the Section about
Icons below, for more information.

iconIndex - optional
If the file type for the icon supports multiple icons in one file, then this attribute may

be used to specify the correct index for the icon. i would also advise against using this
feature, because of operating system incompatibilities in this area. In file formats that
do not support multiple icons, this values is ignored.

initialState - optional
There are four values accepted for this attribute: noShow, normal, maximized and

minimized. If the target operating system supports this feature, then this value will
have the appropriate influence on the initial window state of the application. noShow is
particularly useful when launch scripts are used that cause a command window to open,
because the command window will not be visible with this option. For instance on MS-
Windows starting a batch file that launches a Java application has the less than pretty
side effect that two windows show: the DOS command prompt and the Java application
window. Even if the shortcut is configured to show minimized, there are buttons for
both windows in the task bar. Using noShow will completely eliminate this effect, only
the Java application window will be visible. On Unix use normal , because this is not
supported.

programGroup - semi-optional
The value for this attribute can be either yes or no. Any other value will be interpreted

as no. If the value is yes, then a copy of this shortcut will be placed in the group menu.
On Unix (KDE) this will always be placed on the top level.

desktop - semi-optional
For this attribute the value should also be yes or no. If the value is yes, then a copy

of the shortcut is placed on the desktop. On Unix the shortcuts will only be placed on
the (KDE-) desktop of the user, who currently runs the installer. For Gnome the user
can simply copy the *.desktop files from /Desktop to /gnome-desktop. (This is already
a TODO for the Unix- shortcut implementation.)

applications - semi-optional
This is also a yes/no attribute. If the value is yes, then a copy of the shortcut is placed

in the applications menu (if the target operating system supports this). This is the same
location as the applications choice for the program group. This makes no sense on Unix.

startMenu - semi-optional
This is a yes/no attribute as well. If the value is yes, then a copy of the shortcut is

placed directly in the top most menu that is available for placing application shortcuts.
This is not supported on Unix. see above.

startup - semi-optional
This is also a yes/no attribute. If the value is yes, then a copy of the shortcut is placed

in a location where all applications get automatically started at OS launch time, if this
is available on the target OS. This is also not supported on Unix.

73

Unix specific shortcut attributes

This extension was programmed by MARC EPPELMANN. This is still in development
and may be changed in one of the next releases of IzPack.

type - required
This must be one of Application or Link

• Application: To start any application, native, Java or shell-script based, the
type has to be Application. The GUI-System will launch this Application, so
as is, thru their native shell or application launcher. In this case, note that the
right workingDirectory is always important on Unix platforms. If the users
PATH environment variable does not contain the path, where the application
is located, this can never be run, until the workingDirectory does not contain
these path. The needed current path: “.”, this is the case on most systems,
should be in the users PATH environment variable. Consult the Unix manuals
for more details.

• Link: If you want to open a URL in the users default Webbrowser, you have to
set the type to Link. Note: The url attribute must be set to work properly.

• Other: There are more supported types on KDE, like FSDevice, but these types
makes no sense for IzPack, in my opinion.

Without the type the Unix shortcut does not work.
url - semi-optional
If you want to create a shortcut as type Link , then you have to set the url attribute.

The value can be a locally installed html or another document, with a known MIME
type, like plain text, or a WWW Url i.e. ’http://izpack.org/’.

A local document can be referenced by i.e. “$INSTALL PATH/doc/index.html”.
The IzPack variable substitution system is supported by the url.
encoding - required
This should always set to UTF-8.
terminal - optional
If you want, the user can see the console output of a program (in Java applications

“System.outs”), set the terminal attribute to true.
KdeSubstUID - unused
This is not fully implemented by IzPack. i the future this is the sudo option for a

shortcut.

Selective Creation of Shortcuts

Usually all shortcuts that are listed will be created when the user clicks the ’Next’ button.
However it is possible to control to some degree if specific shortcuts should be created
or not. This is based on install conditions. By including one or more <createForPack
name=’’a pack name’’ /> tags in the specification for a shortcut, you can direct the
ShortcutPanel to create the shortcut only if any of the listed packs are actually installed.

74

http://izpack.org/

The ’name’ attribute is used to define the name of one of the packs for which the shortcut
should be created. You do not need to list all packs if a shortcut should always be created.
In this case simply omit this tag altogether.

A word of caution
For any shortcut that is always created, i would recommend to omit this tag, since i

have seen a number of problems related to changing pack names. You can save yourself
some troubleshooting and some Aspirin by not using this feature if it’s not required.
On the other hand if you need it i would advise to be very careful about changing pack
names.

Localizing shortcuts

The izPack installer allows localization of your installer. Obviously, you will want your
shortcuts labels to be localized, too. Thus, you can provide shortcutSpec files for each
language you support.

This works just like localizing other specs for other panels : add an underscore and
the iso3 language code to the end of the resource name, and set the source name to the
appropriate localized spec file. As for the platforms, if a specific spec file is not declared
for the current language, the installer will revert to the default shortcutSpec.xml re-
source. This way, you can for example have a resource shortcutSpec.xml_fra for french
installs and have the default resource shortcutSpec.xml (maybe containing strings in
english) be used for other languages.

The platform prefix and language suffix are combined like in this example : Unix_shortcutSpec.xml_fra.
When the installer can’t find such a platform-and-language-specific resource, it will

fallback to a suitable default using the following search order : shortcutSpec.xml_<iso3>
(default platform, language-specific) <platform>_shortcutSpec.xml (default language,
platform-specific) shortcutSpec.xml (default platform and language)

Reminder: If the shortcut panel does not find one of these named resources, it will
never appear. So, do not use different resource names and do not add a path to these.

Example

<res src="C:\MyDocuments\Installer\default_shortcut_specification.xml"
id="shortcutSpec.xml"/>

<res src="C:\MyDocuments\Installer\default_shortcut_specification_fr.xml"
id="shortcutSpec.xml_fra"/>

<res src="C:\MyDocuments\Installer\unix_shortcut_specification_en.xml"
id="Unix_shortcutSpec.xml"/>

<res src="C:\MyDocuments\Installer\unix_shortcut_specification_fr.xml"
id="Unix_shortcutSpec.xml_fra"/>

DesktopShortcutCheckboxEnabled Builtin Variable

$DesktopShortcutCheckboxEnabled : When set to true, it automatically checks the
“Create Desktop Shortcuts” button. To see how to use it, go to The Variables Element

75

‘‘<variables>‘
Be careful this variable is case sensitve !

Summary

Native Libraries

• ShellLink.dll - required by Microsoft Windows

• ’Nothing’ - for KDE/Gnome shortcuts

Names of the Specification Files shortcutSpec.xml for Windows and as default.
Unix_shortcutSpec.xml for Unix.

Specification File Layout - Windows

<shortcuts>
<skipIfNotSupported/>
<programGroup defaultName="MyOrganization\MyApplication"

location="applications||startMenu"/>
<shortcut
name="Start MyApplication"
target="$INSTALL_PATH\Path\to\MyApplication\launcher.bat"
commandLine=""
workingDirectory="$INSTALL_PATH\Path\to\MyApplication"
description="This starts MyApplication"
iconFile="$INSTALL_PATH\Path\to\MyApplication\Icons\start.ico"
iconIndex="0"
initialState="noShow||normal||maximized||minimized"
programGroup="yes||no"
desktop="yes||no"
applications="yes||no"
startMenu="yes||no"
startup="yes||no">

<createForPack name="MyApplication Binaries"/>
<createForPack name="MyApplication Batchfiles"/>

</shortcut>
</shortcuts>

A sample Specification File for Unix is at the end of this chapter

Shortcut Tips

I wrote this section to provide additional information about issues surrounding the cre-
ation of shortcuts. Reading this section is not necessary to successfully create shortcuts,
but it might help you creating an installation that works more smoothly. In addition, it

76

might give you some knowledge about operating systems that you don’t know so well. In
fact most of the issues described in this section are focused on differences in operating
system specifics.

The Desktop

You should recognize that the desktop is precious real estate for many people. They like
to keep it uncluttered and keep only the things there that they use on a regular basis.
This is not true for everybody and you might personally think different about this. Still,
the fact remains that a lot of people might have different feelings about it, so you should
not automatically assume that it is ok to place all of your shortcuts on the desktop
proper. While your application is certainly one of the most important things for you, for
your customers it is probably one of many applications they use and maybe not even
the most important one. Accordingly, placing more shortcut icons there than they feel
they will use on a regular basis and especially doing this without asking for permission
might trigger some bad temper.

Annotation: But even the experienced user should be able to organize their Desktop.
On Linux the users desktop is the only place, which supports any kind of shortcuts.

It is common practice to create a program group in the application menu system of
the OS and place all shortcuts that go with an application in that program group. In
addition, only one shortcut to the key access point of the application is placed directly on
the desktop. Many installers first ask for permission to do so, as does the ShortcutPanel
in IzPack.

I would like to recommend that you always create a shortcut in the menu system, even
if your application has only one access point and you are placing this on the desktop.
Note that shortcuts can also be placed directly in the menu, they don’t need to be in a
program group. There are two reasons for doing so.

• If the user elects not to create shortcuts on the desktop, they will end up with
no access point to your application

• Even if this works fine, occasionally people ’clean up’ their desktop. They might
later find that they accidentally deleted the only access point to your applica-
tion. For the less technology savvy users, recreating the shortcut might be a
rough experience.

Icons

Icons are supplied in image files, usually in some kind of bitmap format. Unfortunately
there is no format that is universally recognized by all operating systems. If you would
like to create shortcuts on a variety of operating systems that use your own icons, you
must supply each icon in a number of different formats. This chapter discusses icon
file formats used on various operating systems. Fortunately there are good programs
available that allow you to convert between these formats, so that creating the different
files is not much of a problem once the icons themselves are created.

77

Microsoft Windows
Windows prefers to use its native icon file format. Files of this type usually use the

extension .ico. These so called ICO files can hold multiple icons in one file, which can be
useful if the same icon is to be provided in a number of sizes and color-depths.

Windows itself selects the icon with the most matching dimensions and displays it.
While the Start menu displays the icon with 16x16 pixel if available, the desktop displays
the 32x32 pixel resolution of the same ICO if this is in.

In other words, a ICO file has embedded one or more dimensions of the same Icon.
We recommend to play with microangelo.

Dlls and Exe files on the other side, can store, amongst other things, a collection of
different Icons. You can select your desired Icon by its index. The lowest index is 0. Use
the iconIndex attribute in the spec file to specify this index.

As a sample look into

%SystemRoot%\system32\shell32.dll

These contains a lot of Windows own icons. You can use the PE Explorer or another
Resource Editor to extract or modify Icons in dlls or exe files. But be warned. You can
also destroy a working application with these kind of tools.

At least Windows also supports the use of bitmap files in the .bmp format as icons.
Note that this format does not support multiple icons.

We might have overlooked other file formats that are supported by Windows. However,
we suggest to test other formats for compatibility as they might not work all the way
back to Windows 95 or on the NT/non-NT strain. Sticking with one of these two formats
should keep you out of trouble.

Apple
Apple Macintosh systems use the Macintosh PICT format, extension .pct. If you are

working with an apple system you know a whole lot more about this format than i do.
If you don’t but would like to be able to install your application on a Mac, simply start
with any bitmap format that you feel comfortable to work with. Then find an application
that is capable of converting this format into a .pct file. i like to use Paint Shop Pro
(PC based), because it provides conversion capabilities among several dozen different file
formats.

UNIX flavors
by Marc Eppelmann
As my knowledge, all X based Unix Window systems supports the (ASCII-) XBM

(X-Bitmap) and the better XPM (X-PixMap) format. The modern GUI systems like
KDE and Gnome can display additionally a lot of other ImageIcon formats, such as GIF,
JPG, and PNG.

i suggest to use PNG, because this can lossless compress like the GIF format, however
this format is absolutely free. And not least, this can store true transparency informations
(It has an alpha channel).

78

Targets

So, you thought you could escape the ugly mess of operating system dependencies at
least with the way how your Java application is started? Sorry but i have just another
bad message. The one positive thing is that here you have a way of escaping, even if doing
so has a few less pretty side effects. At first, i would like to discuss various launching
options you have available on different operating systems. At the end of the chapter i
write about a way to make launching your application OS independent.

Microsoft Windows
On Microsoft Windows you have a variety of options for launching your application.

Probably the most simple case is directly starting the Java VM from the command line
and typing out all parameters, such as class path, the class name etc. In principle, this
can be placed right in a shortcut and should work.

A little more elegant solution is to place this in a batch file and have the shortcut
point to this batch file. This will also make it more likely that users can repair or
recreate shortcuts. Recreating shortcuts with sophisticated command lines is practically
impossible.

Another method is less commonly used but just as possible. Implement a native exe-
cutable that launches the VM with your Java application. The VM comes as DLL and
is used by java.exe in just the same way. As a sample look at the exlipse.exe provided
by the Eclipse-IDE

Clearly, even though the first option is a bit ugly and has some restrictionss, it is the
most portable solution among the three.

Apple
We hope, there is a IzPack developer currently researching for the details for the Mac

environment. We expect an updated chapter in one of the next releases.
UNIX
UNIX provides essentially the same options as Windows. You can simply use the com-

mand line option, you can write a shell script and you can write a native launcher.
Naturally this stuff is in no way compatible with the equivalent Windows implementa-
tions. The native option is even more problematic in this environment, since the code
can not even be moved from one UNIX platform to another, without recompilation.

OS Independent Launching
So, after all this rather discouraging news, there is actually a portable way to launch

Java applications? You bet! although i have to admit that it is not necessarily the most
pretty way of doing things.

This approach is currently used by IzPack. Package your application in a .jar file if you
don’t already do so and make it executable by including the necessary metaINF/MANIFEST.MF
information file. i am not going into all the details on how exactly to do this, the Java
documentation will have to do. You might have noticed that even though the instructions
to install IzPack say to type :

java -jar IzPack-install.jar

79

You can just as well double click on IzPack-install.jar and it will start up. This proce-
dure will work on all GUI based Java supported operating systems -though you might
have to replace double clicking with dropping the file on the VM. In just the same way,
you can make the .jar file itself the target of a shortcut. Note: This works only, if jars
are registered as files, which have to launch by the installed JRE (with: javaw.exe -jar)

The one restriction with this approach is that a .jar file can only have one main file. So,
if you have multiple targets, they need to be packaged each into a different .jar file. They
can be in one .jar file but then you have to start them explicitly, which gets you back to
the problems that i mentioned before. This brings me to the ugly part. If you have just
one target, then you are all set. If you have multiple targets, you need to create a .jar
file for each of them. In addition, you have a much harder time setting the classpath,
because each of the .jar files that contain supporting code must be listed. In fact, at
present there is no way of setting this during the installation, because IzPack does not
yet (version 3.0) support the setting and modification of environment variables.

Command Line

Before i start to write a lot about the use of command line arguments let me state this:
If you can avoid using them, do it! Not that there is anything wrong with command
line arguments as such. The issue is simply that if you want your application to be
usable cross platform (the big Java promise) you should shy away from using command
line arguments. The problem here is that not all operating systems actually support
command line arguments. To be more precise, to my knowledge only Apple operating
systems do not support command line parameters. If you don’t care for running your
application on a Mac, then you might not worry about his at all. If you are interested
to support the Mac as well, read on.

In fact the Mac lower than MacOSX supports command line parameters in a way.
More to the point, it supports a single parameter that your application should interpret
as the name of a data file to open. You have no way of supplying this to your application
through the command line attribute. The operating system generates this when the user
drops the file on your application and then passes it as command line argument. That’s
it. This same behavior will probably fly well on pretty much any system and should
therefore be an ok implementation.

So what to do if you want to modify program behavior based on runtime switches?
For one thing, you could set system properties accordingly. The disadvantage here is the
same as with the command line parameters: the way of setting these might vary between
operating systems. The best way seems to be using a property file that contains the
configuration data.

Trouble Shooting

by Elmar
It has been some time since i wrote this chapter during which a good number of users

had a chance to gather experience. Unfortunately i never know how many have used

80

it successfully without much difficulty. i only hear from those that have encountered
one problem or another. The type of problems that i have seen prompted me to write
this section, because i think it will help you in locating most problems that you might
encounter or at least give you some idea where the problem might be located.

Problems You Can Solve

If you see an exception that essentially says that a library can not be loaded (Shel-
lLink.dll) you have an easy problem to deal with. Your installer file is probably missing
the native tag that adds the Windows dll to the installer or something with this tag is
no quite right. Read ’What to Add to the Installer’ for all details on this topic.

Most other problems cause the ShortcutPanel not to show at all during the installation
process. The reason is simply that the ShortcutPanel skips if it does not know what to do
or if it has nothing to do (no point showing then and confusing the user). The problem is
that this is not always what you intended. The most simple but not so uncommon case
is, that the ShortcutPanel cannot find their spec file. This can be caused by a number
of reasons. The associated resource tag might be missing in the installer specification
file, the target file name might be misspelled (the name you specify for the id attribute)
or the target file name has a path or package name pre-pended. You have only to use
shortcutSpec.xml or Unix_shortcutSpec.xml and nothing else, just as described in
’What to Add to the Installer’. You can always verify if this part is ok by inspecting
the content of the installer .jar file. The file shortcutSpec.xml should be located in the
directory res. This inspection can be performed with any zip tool. If the file is not there,
first correct this before proceeding.

If the file is there and the panel does not appear, you have a problem within the
specification file. In most cases that i have seen, it comes down to a spelling mistake of
an attribute or tag name. You just have to carefully make sure that everything is spelled
correctly. Don’t forget that all names are case sensitive! In a few cases it is also happend,
that required or semi- optional attributes are omitted, so you might want to verify if all
attributes that you need are actually supplied.

If everything is correct up to this point the problem becomes more elusive. Most likely
the panel will not be displayed, because it is instructed not to show. There are be several
reasons for this. The simple case is that no location has been specified for the shortcuts
in your installation. This can happen if all five location attributes are omitted or if all the
ones that are listed are set to no. Remember, you have to specify at least one location
for every shortcut. If this is also correct, you might have used the <createForPack>
tag. Review the details in ’Selective Creation of Shortcuts’. One possibility for the panel
not to show is that based on the packs that are currently selected for installation no
shortcut qualifies for creation. In this case the panel will not show, this is perfectly
normal behavior. More likely this condition is true because of some accident and not
because it’s intended. Make sure the packs that you list for the shortcut are actually
defined in your installation and verify that they are all spelled correctly. Remember:
case matters! Did the ShortcutPanel use to work in your installation and all of a sudden
stopped working? Very likely you are dealing with the last problem. A package name

81

might have been modified and the shortcut spec was not adjusted to stay in sync.

Problems That Have No Solution (yet)

Unfortunately one problem has been very persistent and only recently one user found
the reason. The problem occurs when installing on some target systems where non-
English characters are used in the storage path for the shortcuts. The problem is that
these characters don’t seem to be properly translated across the Java Native Interface.
This leads to a situation where the proper path can not be located and the shortcut
creation fails. i write ’some target systems’ because it does not fail everywhere. After
much agonizing over this problem, one user found the solution: The shortcut creation
works fine if a Sun virtual machine is installed, but fails if a version from IBM happens
to be installed. So far i have no solution for this problem but i am trying to find a
workaround the problem.

A sample shortcut specification file for Unix

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<shortcuts>

<programGroup defaultName="IzForge/IzPack"
location="applications"/>

<!-- Disabled since there is no Frontend
shortcut

name="IzPack"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="$INSTALL_PATH/bin/izpack-fe.sh"
commandLine=""
workingDirectory="$INSTALL_PATH/bin"
description="Front-End for IzPack installation tool"
iconFile="$INSTALL_PATH/bin/icons/izpack.png"
iconIndex="0"
type="Application"
encoding="UTF-8"
terminal="true"
KdeSubstUID="false"
initialState="normal">
<createForPack name="Core"/>

82

</shortcut -->

<shortcut
name="IzPack Documentation"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="konqueror"
workingDirectory=""
commandLine=""
initialState="noShow"
iconFile="help"
iconIndex="0"
url="$INSTALL_PATH/doc/izpack/html/izpack-doc.html"
type="Link"
encoding="UTF-8"
description="IzPack user documentation (html format)">

<createForPack name="Documentation-html"/>
</shortcut>

<shortcut
name="Documentation"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="acroread"
workingDirectory=""
commandLine="$INSTALL_PATH/doc/izpack/pdf/izpack-doc.pdf"
initialState="noShow"
iconFile="acroread"
iconIndex="0"
url="$INSTALL_PATH/doc/izpack/pdf/izpack-doc.pdf"
type="Application"
encoding="UTF-8"
description="IzPack user documentation (PDF format)">

<createForPack name="Documentation-PDF"/>
</shortcut>

83

<shortcut
name="Uninstaller"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="no"
startup="no"
target="/usr/lib/java/bin/java"
commandLine="-jar
"$INSTALL_PATH/Uninstaller/uninstaller.jar""
initialState="noShow"
iconFile="trashcan_full"
iconIndex="0"
workingDirectory=""
type="Application"
encoding="UTF-8"
description="IzPack uninstaller">
<createForPack name="Core" />

</shortcut>

</shortcuts>

Creating Your Own Panels

In IzPack all of the actual work of installing an application is done in panels. The IzPack
framework is primarily there to support the operation of the panels and to manage
the navigation through the installation process. This enables a user to decide which
operations are carried out during an installation and the order in which they are carried
out, simply by listing the appropriate panels in the desired order.

As far as extending the functionality of IzPack is concerned, the result of this design
is that new functionality can be integrated by adding new panels to the framework and
then listing them in the install spec. Because the existing panels all have a visible GUI
and because the term panel hints at something visible, it is not obvious that a panel
does not have to contain any visible GUI to function in this framework. There are more
details on this subject later on in this chapter.

How to get started

To get started with writing your own panels, it is best to place all the IzPack code into
a separate working directory, from where you can compile it. Then try to compile the
code as is and get that to work.

The next step would be to have a look at another panel implementation, so you
can see how things are done. Make sure you look at the less complicated panels, as
the panels with advanced features will only be confusing. All the code for building UI

84

and such, only detracts from the essentials of what a panel needs to do. This means
that you shouldn’t start with ‘‘ UserInputPanel‘‘ or ShortcutPanel. HelloPanel is
probably a much better choice at this stage. The source code for panels is located at:
/src/lib/com/izforge/izpack/panels.

You will find that all panels are derived from IzPanel; do the same thing with your new
panel. Please note that the IzPanel class itself is located in the ‘‘ com.izforge.izpack.installer‘‘
package but your panels need to belong to com.izforge.izpack.panels. Perhaps you
can just copy the code of a panel, remove all the functional stuff and then start filling
in your own code. Start with something very simple to begin with, just to see how it
works. The implementation is really quite straight forward.

Next Steps

Once you have a successful compilation, you must place the compiled result of your
panel code at a special place, so that the installer compiler can fetch it when building
an installer that uses your panel. Go to: /bin/panels

You will see that there is a subdirectory for each panel. Make a subdirectory for your
new panel with the exact same name as your panel and place your compiled panel code
there.

Once this is accomplished, you are ready to use your panel in an installer. Just list it
in the spec file like any other panel, compile and in theory it will show up when running
the installer. Once you made it this far, you can dig deeper and get going with your
specific needs.

Oh, and one other thing: If you think the your code might be useful for a larger
audience, please think about a contribution to IzPack.

Access to the Variable Substitution System

One thing many developers ask about is how to get access to the variable substitution
system. This is not surprising, because customizing an installation for a particular target
environment is one of the most important functions of an installer and the variable
substitution system plays a big part in this operation.

You can get access to the variable substitution system through the protected variable
idata in IzPanel. This variable is of the type InstallData, which is in turn subclassed
from AutomatedInstallData. The Javadoc documentation will give you more details on
these classes. Of particular interest in this context are the methods ‘‘ getVariable()‘‘,
setVariable() and getVariableValueMap() in AutomatedInstallData.

Controlling Flow

Some of the interesting methods in com.izforge.izpack.InstallerFrame that you
might want to explore are lockPrevButton() and lockNextButton(). They allow you
to block the use of the button to move back to the previous panel and the button
that moves to the next panel respectively. Being able to control the availability of these
buttons to the user is important if one of your panels performs a task where the effects

85

cannot be undone. If the user would navigate back to the previous panel your installation
might get into an unknown or even unstable state. On the other hand, if the operations
in one panel vitally depend that a task in the previous panel is completed, then you
should block the use of the next button until that task is completed.

Reading XML

If you need configuration files for your panel you would want to use XML for that
purpose. To read XML files you should use NanoXML, as it is guaranteed to be available
at installation time. In fact, all of the IzPack infrastructure uses NanoXML to read XML
files. First you should read the NanoXML documentation. The documentation is included
as PDF file with the IzPack distribution, have a look in /doc/nanoxml. In addition to
that, the Javadoc-generated class documentation is an excellent resource to get help on
NanoXML. And then, there is always the code of other panels to see practical examples.
Generally, it is a much simpler matter to use NanoXML then to use the DOM included
with the Java distribution, so don’t hesitate to explore NanoXML.

Supporting Classes

If your panel requires any supporting classes that are part of the panels package, then
you must place the .class files into the same directory with your panel .class file.

It is also possible to have supporting classes that are not part of the panels package.
In fact, these classes don’t even have to be in the com.izpack... tree. You simply
have to ensure that the .class files are located in the proper directory structure inside
/lib/installer.jar. If this is done, they will be available at install time. For your first
experiments you can simply compile your classes and add them to the .jar file using the
jar tool or a zip utility. However, ultimately it is much easier to use Ant and the IzPack
build script to accomplish this task.

Panels that are not visible

If you have a task that needs to be performed at a particular step in the installation
process, but that does not need any user interaction, you can implement a panel that
is not visible. To implement this, you should first familiarize yourself with the Javadoc
documentation of com.izforge.izpack.InstallerFrame. In your panel code you get
access to the right instance of InstallerFrame through the protected variable parent
in IzFrame.

To begin with, do not configure any UI. In other words, do not set a layout and do
not place any GUI elements on your panel. In this context the method skipPanel()
is what gets the job done. In your panelActivate() method you simply perform your
task and then call parent.skipPanel(). This gets the job done without the user being
aware that there was another panel in the flow.

86

A word about building IzPack

If you don’t already use Jakarta Ant to support your development work, i highly recom-
mend you have a look at it. It is a great help in organizing practically all routine tasks
connected with building and packaging your application. For example, building and get-
ting IzPack ready for distribution is not a straight forward process but with Ant this all
comes down to starting a single command. In addition, IzPack provides its own Ant task,
which supports the integration of building a complete installer into your regular build
scripts. You can find more details about this in the chapter about advanced features. To
get a look at Ant you can visit the following link: http://ant.apache.org/index.html.

You can find the Ant build script for IzPack itself at: /src/build.xml

The IzPanel Class

The two data members are : the install data (refer to the InstallData Javadoc refer-
ence) and a reference to the parent installer frame.

The methods have the following functionality :

• (constructor) : called just after the language selection dialog. All the panels are
constructed at this time and then the installer is shown. So be aware of the fact
that the installer window is not yet visible when the panel is created. If you
need to do some work when the window is created, it is in most cases better do
it in panelActivate.

• isValidated returns true if the user is allowed to go a step further in the
installation process. Returning false will lock it. For instance the LicencePanel
returns true only if the user has agreed with the license agreement. The default
is to return true.

87

http://ant.apache.org/index.html

• panelActivate is called when the panel becomes active. This is the best place
for most initialization tasks. The default is to do nothing.

• makeXMLData is called to build the automated installer data. The default is to
do nothing. panelRoot refers to the node in the XML tree where you can save
your data. Each panel is given a node. You can organize it as you want with
the markups you want starting from panelRoot. It’s that simple.

• runAutomated is called by an automated-mode installation. Each panel is called
and can do its job by picking the data collected during a previous installation
as saved in ‘‘ panelRoot‘‘ by makeXMLData.

• setInitialFocus with this method it is possible to set a hint which component
should be get the focus at activation of the panel. It is only a hint. Not all compo-
nents are supported. For more information see java.awt.Component.requestFocusInWindow
or java.awt.Component.requestFocus if the VM version is less than 1.4.

• getInitialFocus returns the component which should be get the focos at ac-
tivation of the panel. If no component was set, null returns.

• getSummaryBody this method will be called from the SummaryPanel to get
the summary of this class which should be placed in the SummaryPanel. The
returned text should not contain a caption of this item. The caption will be
requested from the method getCaption. If null returns, no summary for this
panel will be enerated. Default behaviour is to return null.

• getSummaryCaption this method will be called from the SummaryPanel to get
the caption for this class which should be placed in the SummaryPanel. De-
fault behaviour is to return the string given by langpack for the key Class-
Name.summaryCaption.

Additionally, there are some helper methods to simplify grid bag layout handling and
creation of some common used components.

The Internationalization of custom panels

A common way to define language dependant messages for custom panels is to add
entries into the common langpacks which are stored in the directory

[IzPackRoot]/bin/langpacks/installer

New with version 3.8 is the possibility to define a resource for custom langpacks. Define
e.g.

<resources>
...
<res id="CustomLangpack.xml_deu"

src="myConfigSubPath/CustomLangpack_deu.xml"/>
...

</resources>

88

in the install.xml file.The id should be written as shown, the file sub path and name
can be other than in the example. This file should be using the same DTD as the common
langpack. For each language a separate file with the ISO3 extension in the id should be
used.

User Input

(by Elmar GROM)
Most of the panels that come with IzPack take user input in some form. In some

panels this is through a simple user acknowledgment in others the user can enter text or
select a directory through a file open dialog. In all of those cases the user input is used
for the specific purpose needed by the panel that takes the input. However, if you need
user input during installation that will later on be available to your application then you
need to use the user input panel.

To use this panel, list it in the install file with the class name UserInputPanel. In
addition, you must write a XML specification and add it to the install resources. The
name of this resource must be userInputSpec.xml.

Here’s an example userInputSpec.xml showing 3 panels. There are some advanced
features in this example, but the general flow should be looked at first.

The user input panel is a blank panel that can be populated with UI elements through
a XML specification file. The specification supports text labels, input elements, explana-
tory text and some minor formatting options.

The following types of user input elements are supported:

• Text

• Combo Box

• Radio Buttons

• Check Box

• Password

• File

• Directory

• Rule Input Field

• Search Field

Additionally visual elements can be added using the following types:

• Static Text

• Title

• Space

• Divider

89

file:sample-userInputSpec.html

The way in which this panel conveys the user input to your application is through the
variable substitution system. User input is not directly inserted into your configuration
files but the variables that you specify for this panel are set in the variable substitution
system. After this operation has taken place the variables and associated values are
available for all substitutions made. This way of operation has a number of implications
that you should be aware of.

First, not only can you set additional variables in this way but you can also modify
variables that are defined elsewhere -even built in variables. For this reason you should
be careful to avoid overlaps when choosing variable names. Although there might be
cases when it seems useful to modify the value of other variables, it is generally not a
good idea to do so. Because you might not exactly know when other variables are set
and when and where they are used throughout the installation process, there might be
unintended side effects.

Second, the panel must be shown at a point during the installation process before the
variables are used. In most cases you will use the values to substitute variables in launch
and configuration files that you supply with your installation. For this to work you place
this panel before the install panel, because the install panel uses the variable substitutor
to replace all such variables. Although using this panel any later in the process will
correctly set the variables internally, there won’t be any affect on the files written to
disk. You can also use variables set in this way in other panels that you have written
yourself. There is a section in the chapter on writing your own panel that explains how
to do this. Also in this case it is important to place the associated input panel in the
process before the variables are used.

At this point I would also like to mention that it is possible to hide select elements on
the panel or the panel altogether if certain packs are not selected. For this to work you
must place this panel after the packs panel. One side effect of using this feature is that
it is not possible to step back once the user input panel is displayed. This is because the
user might make changes in the packs selection that would require a complete rebuild of
the UI. Unfortunately, building the UI is an irreversible process, therefore the user can
not be allowed to go back to the packs panel.

The Basic XML Structure

The top level XML section is called <userInput>. For most panels it does not make
sense to present them more than once, however you might want to present multiple user
input panels -with different content of course. Therefore the <userInput> section can
contain multiple tags that each specify the details for one panel instance. The tag name
for this is <panel>.

The <panel> tag uses the following attributes:
order - required
This is the order number of the user input panel for which this specification should

be used. Counting starts at 0 and increments by 1 for each instance of the user input
panel. So if a spec should be used for the second occurrence of the user input panel use
order="1".

90

layout - optional
There are three general layout rules this panel uses, they are left, center and right.

While i think left is most commonly used, you might want to experiment with this
attribute and see which you like best. The default is left.

Concepts and XML Elements Common to All Fields

Before we dive into the details of defining the various UI elements I would like to present
XML elements and general concepts that apply throughout. This saves me a lot of work
in writing and you a lot of repetitive reading and maybe a tree or two.

The UI elements are generally laid out top to bottom in the order they appear in the
XML file. The only exception to this rule is the title, which always appears at the very
top. The layout pattern for the input fields is as follows: If a description is defined, it
appears first, using the full available layout width. The input field is placed beneath the
description. With fields such as the text field or the combo box, the label is placed to
the left and the input field to the right. Fields such as radio buttons and check boxes
are somewhat indented and have the label text appear to their right.

Each UI element is specified with a <field> tag. The type attribute is used to specify
what kind of field you want to place. Obviously, the type attribute is not optional.

Each field that takes user input must also specify the variable that should be substi-
tuted. This is done with the variable attribute.

Almost all fields allow a description. When a description is allowed it is always added
in the same way. The description is part of the data within the field tag. There can
only be one description per field. If you add more than one, the first one is used and
the others ignored. There are three attributes used with this tag. The text is specified
through the txt or the id attribute. The details on using them are described below. The
attributes are all optional but you must specify text to use, either directly or through the
id attribute. In addition, you can set the text justification to left, center and right
with the align attribute.

The following example illustrates the general pattern for field specification:

<field type="text" variable="myFirstVariable">
<description align="left" txt="A description" id="description1"/>
.
.
.

</field>

A very frequently used pattern is for the definition of text. Where ever text is needed
(labels, descriptions, static text, choices etc.) it can be specified in place using the txt
attribute. This is convenient if you are only supporting a single language. However, if you
would like to separate your text definitions from the panel specification or if you need to
support multiple languages you might want to use the id attribute instead to only specify
an identifier. You can then add multiple XML files with the same name as this spec file
(userInputSpec.xml) appended with an underscore ’ ’ and the the appropriate three

91

letter ISO3 language code. The content of those files must conform to the specification
for IzPack language packages. For more details on this topic see the chapter on language
packages under advanced features. id defines an identifier that is also defined in the
language package, together with the localized text to use. It is possible to use both the
txt and the id attribute. In this case the text from the language package is used. If for
some reason the language package is not available or the id is not defined there, the text
specified with txt is used as default.

All input fields can be pre-set with a value of your choice. Although the details vary
a bit from field type to field type, the set attribute is always used to accomplish this.
The set attribute is of course optional.

All fields that take user input use a <spec> tag to define the details of the input
field. In the some cases the content of this tag is rather simple. Input fields with a more
complex nature tend to have accordingly complex content in this tag. Since the details
vary widely, they are explained with each input field.

Any number of <createForPack name=’’a pack name’’ /> tags can be added to
the <panel> and <field> sections. This tag has only one attribute and no data. The
attribute is name and specifies the name of one of the installation packs that you have
defined. Here is how it works: if no <createForPack ...> tag exists in a section, the
entity is always created. However, if the tag exists, the entity is only created if one or
more of the listed packs are selected for installation. As mentioned before, if you are
using this feature, make sure the user input panel shows up after the packs panel.

Also, any number of <createForUnselectedPack name=’’a pack name’’ /> tags
can be added to the <panel> and <field> sections. This tag has only one attribute and
no data. It works exactly like createForPack except that once added user input panel
will appear for only NOT Selected packs. As mentioned earlier, you need to make sure
that the user input panel shows up after the packs panel for this feature to work.

There is a possibility to use variables in those elements where the text is supplied via
txt attribute. This includes static fields and input fields (spec, description). The text
can contain unlimited number of variables that will be substituted. Variable substitution
also works with language packs, just use variables in your language pack, and they will
be still substituted properly.

Example
In the following example, the variables: name1, name2, name3 will be substituted.

<field type="text" variable="value1">
<description align="left" txt="Configuration for $name1 and $name2" id=""/>
<spec txt="The value for $name3:" id="" size="20" set="default value" />

</field>

Internationalization

To provide internationalization you can create a file named userInputLang.xml_xyz
where xyz is the ISO3 code of the language in lowercase. Please be aware that case is

92

significant. This file has to be inserted in the resources section of install.xml with the
id and src attributes set at the name of the file.

Example:
If you have the following userInputSpec.xml and you want to internationalize input.comment,

input.proxy, input.port for English and French you have to create two files named
userInputLang.xml eng and userInputLang.xml fra:

<userInput>
<panel order="0">
<field type="staticText" align="left" txt="My comment is here."
id="input.comment"/>
<field type="text" variable="proxyaddress">

<spec txt="Proxy Host:" id="input.proxy" size="25"
set=""/>

</field>
<field type="text" variable="proxyPort">

<spec txt="Proxy Port:" id="input.port" size="6"
set=""/>

</field>
</panel>
</userInput>

userInputLang.xml eng file contains:

<langpack>
<str id="input.comment" txt="English:My comment is here."/>
<str id="input.proxy" txt="English:Proxy Host:"/>
<str id="input.port" txt="English:Proxy Port:"/>

</langpack>

userInputLang.xml fra file contains:

<langpack>
<str id="input.comment" txt="French:My comment is here."/>
<str id="input.proxy" txt="French:Proxy Host:"/>
<str id="input.port" txt="French:Proxy Port:"/>

</langpack>

you will also have to add the following to the install.xml file

<resources>
...
<res id="userInputSpec.xml" src="userInputSpec.xml"/>
<res id="userInputLang.xml_eng" src="userInputLang.xml_eng" />
<res id="userInputLang.xml_fra" src="userInputLang.xml_fra" />
...

</resources>

93

Panel Title

You can place an optional title at the top of the panel. Though it is not possible to
select a font for the title that is different form the one used on the rest of the panel, it is
possible to modify the font to some extent. To specify the title create a <field> tag and
use the type attribute with the value title. In addition to the txt and id attributes,
the following attributes are supported:

italic - optional
With a value of true specifies that the title font should be in italics.
bold - optional
With a value of true specifies that the title font should be bold.
size - optional
This attribute specifies the size of the title font. Please note that the size is not specified

in points but as a relative size multiplier compared to the body font on the panel. The
default value is 2.

Static Text

Static text is simply text that is placed on the panel without direct connection to any
of the input elements. It is laid out to use the entire layout width available on the panel
and is broken into multiple lines if necessary. To specify static text create a <field> tag
and use the type attribute with a value of staticText. In addition to the ‘‘ txt‘‘ and
id attributes, the text can be justified left, center or right with the align attribute.
It is not possible to format this text in any way. You can also use variables in the text
(as it was mentioned above), they will be substituted with variable’s value.

Example
The following example inserts some static text in the panel.

<field type="staticText" align="left"
txt="This is just some simple static text with variable substitution in here: $myvariable."
id="staticText.text"/>

Visual Separation

Sometimes it is desirable to separate different entities visually. This can be accomplished
by inserting a space or a divider. A space simply inserts a vertical separation of the
average height of a single line entity, such as a line of text or a an input field. A divider
inserts the same amount of space but also draws a division line which can be either
aligned at the top or bottom of the separation.

<field type="divider" />
<field type="space" />

94

Text Input

A text input field allows the user to enter and edit a single line of text, without length
restriction. The input field can have a label, which will show to the left of the input
field and a description, which can span multiple lines. The description is placed above
the input field and uses the entire available layout width. The width of the input field
must be explicitly set, otherwise it will only accommodate a single character. To specify
a text input field create a <field> tag and use the type attribute with a value of text.
The txt and id attributes are not supported here. The variable attribute specifies the
variable that should be replaced with the text taken from the input field.

The Data
The data consists of two items, a description and the spec. The <spec> tag uses four

attributes. The label text is specified with txt and/or id as described above. In addition,
the width of the input field as it appears on the panel can be set with the size attribute.
The value must be an integer and sets the field width based on the average character
width of the active font. If this is not specified, then you will end up with a very narrow
field that is practically unusable.

The fourth attribute set is optional. It takes a text string to pre-fill the input field.
Example
The following example creates a text input field with a label and description. The

width of the input field will be enough to accommodate 15 characters. The field will be
pre-set with the text ’some text’ when the UI is first presented.

<field type="text" variable="textInput">
<description align="left" txt="A description for a text input field"

id="description.text"/>
<spec txt="Enter some text:" id="text.label" size="15" set="some text"/>

</field>

Radio Buttons

The radio buttons are useful when the user needs to select a specific option out of a
pre-defined list of choices. This field offers an arbitrary number of mutually exclusive
buttons, each with its own label. The placement of the buttons and labels is different
form other fields. First, the button is placed to the left and the label text to the right.
Second, the buttons are not lined up all the way to the left as other labels are but they
are indented from that location. As with other fields, the description is placed above the
list of radio buttons and uses the entire available layout width. To specify a set of radio
buttons create a <field> tag and use the type attribute with a value of radio. The txt
and ‘‘ id‘‘ attributes are not supported here. As with all other input fields, the variable
attribute specifies that variable that should be replaced with the user selection.

The Data
The data consists of two items, a description and the spec. The <spec> tag has no

attributes, instead the specification details are entered as data within the ‘‘ <spec>‘‘ tag.
The <spec> data consists of one or more <choice> tags. One <choice> tag is required for

95

each radio button. The ‘‘ <choice>‘‘ tag accepts the usual txt and id attributes, which
are used to specify the label text. In addition the following attributes are supported:

value - required
The value attribute is used to specify which value to insert if this associated radio

button is selected. In other words, the label text has nothing to do with the value that
is actually substituted for the variable. For this reason there is never an issue if multiple
languages are used, the value is always the same for a given selection.

set - optional
The set attribute accepts the values true and false. Since the attribute is optional

it can also be omitted, which is interpreted as false. If a value of true is used, the
associated radio button will be selected when the UI is first presented. Obviously, only
one of the buttons in a set should be set to true.

Example
The following example creates a set of four radio buttons with description. The second

button will be selected when the UI is first presented.

<field type="radio" variable="radioSelection">
<description align="left" txt="This is a description for radio buttons"

id="description.radio"/>
<spec>

<choice txt="the first choice" id="radio.label.1" value="1 selected" />
<choice txt="the second choice" id="radio.label.2" value="2 selected" set="true" />
<choice txt="the third choice" id="radio.label.3" value="3 selected" />
<choice txt="the fourth choice" id="radio.label.4" value="4 selected" />

</spec>
</field>

Combo Box

The combo box provides essentially the same functionality as do the radio buttons, just
in a different presentation stile. The advantage of the combo box is that it is easier to
deal with a long list of choices.

Check Box

If there are a number of choices and any combination of them could be selected, not just
a single one, then radio buttons are not the way to go. You might be better off using a
number of check boxes. The layout for a check box works in the same way as for radio
buttons. The check box is placed indented from the left most edge and the label text is
placed to the right of it. Other than with radio buttons, you cannot define any number
of check boxes. This field allows the definition of only one check box, which is associated
with one variable. If you need multiple check boxes you need to define one field for each
of them. To make it look like a cohesive group you simply provide a description only for
the first check box. All of the check boxes will be positioned in such a way that they look
like a group, even though they are separate entities and their selections are conveyed

96

to different variables. The description is placed above the check box and uses the entire
available layout width. To specify a check box create a <field> tag and use the type
attribute with a value of check. As with all other input fields, the variable attribute
specifies the variable that should be replaced with the user input.

The Data
The data consists of two items, a description and the spec. The <spec> tag accepts

the usual txt and id attributes, which are used to specify the label text. In addition,
the following attributes are supported:

true - required
The true attribute specifies the value to use for substitution when the box is selected.
false - required
The false attribute specifies the value to use for substitution when the box is not

selected.
set - optional
The set attribute accepts the values true and false. Since the attribute is optional

it can also be omitted, which is interpreted as false. If a value of true is used, the
check box will be selected when the UI is first presented.

Example
The following example creates a check box with description. The check box will not

be selected when the UI is first presented. This could also be accomplished by omitting
the set attribute.

<field type="check" variable="checkSelection.1">
<description align="left" txt="This is a description for a check box"

id="description.check.1"/>
<spec txt="check box 1" id="check.label.1" true="on" false="off"

set="false"/>
</field>

Password Field

The password field allows masked user input to accept password values. Normally, a spec
is created with 2 ’pwd’ elements to allow equality validation (below) and ensure the user
typed the password correctly. The password field also allows multiple validators (see
below). This is a very powerful feature for chaining validation operations based on user
input. See the PasswordKeystoreValidator for an example.

<field type="password" align="left" variable="the.password">
<spec>
<pwd txt="The Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
</field>

97

File Field

This field allows the user to select a file from the file system. Text can be added before
the selection or a static text element can be added to display above the selection box (a
little more visually appealing).

<field type="file" align="left" variable="the.file">
<spec txt="" size="25" set=""/>

</field>

<field type="staticText" align="left" txt="Existing SSL keystore to import:"/>
<field type="file" align="left" variable="existing.ssl.keystore">
<spec txt="" size="25" set=""/>

</field>

Pressing ’Next’ without a file selected show the following message:

Messages for the file field can be customized by creating a custom lang pack and
overriding the following values (attribute values wrapped for readability):

<str id="UserInputPanel.file.nofile.message" txt="You must select a valid file."/>
<str id="UserInputPanel.file.nofile.caption" txt="No File Selected"/>
<str id="UserInputPanel.file.notfile.message" txt="The file you have chosen either

does not exist or is not valid."/>
<str id="UserInputPanel.file.notfile.caption" txt="Invalid File"/>

98

Note: Mixing file fields with other fields that have text in front of them can lead to
formatting (layout) issues. Placing these types of elements on different panels can provide
a much better user experience.

Directory Field

The directory field is essentially the same as the file field except the field will ensure a
directory is selected.

<field type="dir" align="left" variable="existing.jboss.home">
<spec txt="" size="25" set="$INSTALL_PATH$FILE_SEPARATOR${jboss.version}"/>

</field>

Messages for the directory field can be customized by creating a custom lang pack and
overriding the following values (attribute values wrapped for readability):

<str id="UserInputPanel.dir.nodirectory.message" txt="You must select a valid directory."/>
<str id="UserInputPanel.dir.nodirectory.caption" txt="No Directory Selected"/>
<str id="UserInputPanel.dir.notdirectory.message" txt="The directory you have chosen

either does not exist or is not valid."/>
<str id="UserInputPanel.dir.notdirectory.caption" txt="Invalid Directory"/>

Note: Mixing directory fields with other fields that have text in front of them can lead
to formatting (layout) issues. Placing these types of elements on different panels can
provide a much better user experience.

Rule Input

The rule input field is the most powerful and complex one of all the input fields offered
by this panel. In its most simple incarnation it looks and works like a regular text input
field. There is also only an incremental increase of the complexity in the specification
for this case. However, it is unlikely that you would use it for such a purpose. The real
power of this input field comes from the fact that rules can be applied to it that control
many aspects of its look as well as overt and covert operation.

Layout and Input Rules

The basic nature of this input field is that of a text input field and as mentioned before,
in its most simple incarnation that is what it looks like and how it operates. However,
the layout of the field can be defined in such a way that there are multiple logically
interconnected text input fields, adorned with multiple labels. Further more, each of
these fields can be instructed to restrict the type of input that will be accepted. Now
you might ask what this could be useful for. As an answer, let me present a few exam-
ples that show how this feature can be used. Before i do this however, i would like to

99

describe the specification syntax, so that the examples can be presented together with
the specifications that make them work in a meaningful way.

The actual specification of the layout, the labels and the type of input each field accepts
all happens in a single string with the layout attribute. First let us have a look at the
specification format for a single field. This format consists of a triplet of information,
separated by two colons ’:’. A typical field spec would look like this: N:4:4, where the
first item is a key that specifies the type of input this particular field will accept - numeric
input in the example. The second item is an integer number that specifies the physical
width of the field, this is the same as in the with of any regular text field. Therefore
the field in the example will provide space to display four characters. The third item
specifies the editing length of the string or in other words, the maximum length of the
string that will be accepted by the field. In the layout string you can list as may fields
as you need, each with its own set of limitations. In addition you can add text at the
front, the end and in between the fields. The various entities must be separated by white
space. The behavior of this field is such that when the editing length of a field has been
reached, the cursor automatically moves on to the next field. Also, when the backspace
key is used to delete characters and the beginning of a field has been reached, the cursor
automatically moves on to the previous field. So let us have a look a some examples.

Phone Number
The following specification will produce a pre formatted input field to accept a US

phone number with in-house extension. Even though the pattern is formatted into num-
ber groups as customary, complete with parentheses ’(’ and dash ’-’, entering the number
is as simple as typing all the digits. There is no need to advance using the tab key or
to enter formatting characters. Because the fields only allow numeric entry, there is a
much reduced chance for entering erroneous information. "(N:3:3) N:3:3 - N:4:4
x N:5:5". Each of the fields uses the ’N’ key, indicating that only numerals will be ac-
cepted. Also, each of the fields only accepts strings of the same length as the physical
width of the field.

E-Mail address
This specification creates a pattern that is useful for entering an e-mail address

"AN:15:U @ AN:10:40 . A:4:4". Even though the first field is only fifteen characters
wide it will accept a string of unlimited length, because the ’U’ identifier is used for the
edit length. The second field is a bit more restrictive by only accepting a string up to
forty characters long.

100

IP address
It might not be uncommon to require entering of an IP address. The following simple

specification will produce the necessary input field. All fields are the same, allowing just
three digits of numerical entry. "N:3:3 . N:3:3 . N:3:3 . N:3:3"

Serial Number or Key Code
If you ship your product with a CD key code or serial number and require this infor-

mation for registration, you might want to ask the customer to transcribe that number
from the CD label, so that it is later on accessible to your application. As this is al-
ways an error prone operation, the predefined pattern with the easy editing support
and restriction of accepted data helps to reduce transcription errors "H:4:4 - N:6:6 -
N:3:3". This particular specification will produce three fields, the first accepting four
hexadecimal, the second six numerical and the third three numerical digits.

Limitations
Even though the above examples all use single character labels between fields, there is

no restriction on the length of these labels. In addition, it is possible to place label text
in front of the first field and after the last field and the text can even contain spaces. The
only limitation in this regard is the fact that all white space in the text will be reduced
to a single space on the display. This means that it is not possible to use multiple spaces
or tabs in the text.

The following table lists and describes all the keys that can be used in the specification
string.

KeyMeaning Description

N numeric The field will accept only numerals.

101

KeyMeaning Description

H hexadecimalThe field will accept only hexadecimal numerals, that is all numbers
from 0-F.

A alphabeticThe field will accept only alphabetic characters. Numerals and punctu-
ation marks will not be accepted.

AN alpha-
numeric

The field will accept alphabetic characters and numerals but no punc-
tuation marks.

O open The filed will accept any input, without restriction.
U unlimited This key is only legal for specifying the editing length of a fields. If used,

the field imposes no length restriction on the text entered.

Setting Field Content

Like all other input fields the rule input field can also be pre-filled with data and as
usual, this is accomplished thought the set attribute. As you might expect, the details
of setting this field are rather on the complicated side. In fact you can set each sub
field individually and you can leave some of the fields blank in the process. The set
specification for all sub fields is given in a single string. Each field is addressed by its
index number, with the count starting at 0. The index is followed by a colon ’:’ and then
by the content of the field. The string “0:1234 1:af415 3:awer” would fill the first subfield
with 1234, the second one with af415 and the fourth with awer. The third subfield
would stay blank and so would any additional fields that might follow.

The individual field specs must be separated with spaces. Spaces within the pre-fill
values are not allowed, otherwise the result is undefined.

The Output Format

The user input from all subfields is combined into one single value and used to replace
the variable associated with the field. You can make a number of choices when it comes
to the way how the subfield content is combined. This is done with the resultFormat
and separator attributes. The resultFormat attribute can take the following values:

Value Meaning

plainStringThe content of all subfields is simply concatenated into one long string.
displayFormatThe content of all subfields and all labels (as displayed) is concatenated

into one long string.
specialSeparatorThe content of all subfields is concatenated into one string, using the

string specified with the separator attribute to separate the content of
the subfields.

processed The content is processed by Java code that you supply before replacing
the variable. How to do this is described below.

102

Validating Field Content

You can provide runtime validation for user input into a text field and rule field via the
validator element (which is a child of the field element. There are two types of built-in
validators already provided: a NotEmptyValidator and a RegularExpressionValidator.
You can also easily create your own validator. In all cases, if the chosen validator returns
false, a messagebox will display the contents of the txt attribute and the user will be
unable to continue to the next panel.

You can specify a processor for a combobox:

<choice processor="fully.qualified.class.name"
set="selectedValue"/>

so that you can fill a combobox with data on a simple way.

NotEmptyValidator

The NotEmptyValidator simply checks that the user entered a non-null value into each
subfield, and returns false otherwise.

RegularExpressionValidator

The RegularExpressionValidator checks that the user entered a value which matches a
specified regular expression, as accepted by the Jakarta Regexp library (http://jakarta.apache.org/regexp/).
The syntax of this implementation is described in the javadoc of the RE class (http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html).

You can specify the regular expression to be tested by passing a parameter with a
name of pattern to the validator (via the param element), with the regular expression
as the value attribute. For example, the following would validate an e-mail address:

The example of using Regexp validator in rule input field:

<field type="rule" variable="EMAILaddress">
<spec

txt="Your Email address:" layout="O:12:U @ O:8:40 .
A:4:4"
set="0: 1:domain 2:com" resultFormat="displayFormat"

/>
<validator
class="com.izforge.izpack.util.RegularExpressionValidator"

txt="Invalid email address!">
<param

name="pattern"
value="[a-zA-Z0-9._-]{3,}@[a-zA-Z0-9._-]+([.][a-zA-Z0
-9_-]+)*[.][a-zA-Z0-9._-]{2,4}"

/>
</validator>

</field>

103

http://jakarta.apache.org/regexp/
http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html

The example of using Regexp validator in text input field:

<field type="text" variable="EMAILaddress">
<spec

txt="Your Email address:" set="you@domain.com" size="20" id=""
/>
<validator
class="com.izforge.izpack.util.RegularExpressionValidator"

txt="Invalid email address!">
<param

name="pattern"
value="[a-zA-Z0-9._-]{3,}@[a-zA-Z0-9._-]+([.][a-zA-Z0
-9_-]+)*[.][a-zA-Z0-9._-]{2,4}"

/>
</validator>

</field>

An example of using regexp validator in a password field (attribute text wrapped for
readability):

<field type="password" align="left" variable="db.password">
<spec>
<pwd txt="DB Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator"

txt="Both DB passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.RegularExpressionValidator"

txt="Service password must begin with a character and be 8-20
mixed-case characters, numbers, and special characters [#@!$_]."
id="key for the error text">

<param name="pattern" value="^(?=[a-zA-Z])(?=.*[0-9])(?=.*[#@!$_])
(?=.*[A-Z])(?=.*[a-z])(?!.*[^a-zA-Z0-9#@!$_])(?!.*\s).{8,20}$"/>

</validator>
</field>

You can test your own regular expressions using the handy applet at http://jakarta.apache.org/regexp/applet.html.

PasswordEqualityValidator

This validator uses a password field specification to compare the values in each field for
equality. Normally, this would be to ensure a password was typed correctly before any
other validation takes place.

104

http://jakarta.apache.org/regexp/applet.html

<field type="password" align="left" variable="the.password">
<spec>
<pwd txt="The Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator"

txt="Both passwords must match." id="lang pack key for the error text"/>
</field>

PasswordKeystoreValidator

This validator uses the password field and parameters you send in from previous user
input or predefined properties to open a keystore and optionally try to get a specified
key.

You must specify the parameter ’keystoreFile’, and optionally ’keystoreType’ (defaults
to JKS), ’keystoreAlias’ (to check for existence of a key), and ’aliasPassword’ (for trying
to retrieve the key).

An additional parameter ’skipValidation’ can be set to ’true’ in a checkbox and allow
the validator framework to run, but not actually do the validation.

Optionally checking the key password of multiple keys within a keystore requires the
keystore password (if different from the key password) be set in the ’keystorePassword’
parameter.

<field type="password" align="left" variable="keystore.password">
<spec>
<pwd txt="Keystore Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator"

txt="Both keystore passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator"

txt="Could not validate keystore with password and alias provided." id="key for the error text">
<param name="keystoreFile" value="${ssl.keystore}"/>
<param name="keystoreType" value="${ssl.keystore.type}"/>
<param name="keystoreAlias" value="${keystore.key.alias}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

</validator>
</field>

Creation Your Own Custom Validator

You can create your own custom Validator implementation simply by creating a new class
which implements the com.izforge.izpack.panels.Validator interface. This inter-
face specifies a single method: validate(ProcessingClient client) , which returns

105

a boolean value. You can retrieve the value entered by the user by casting the in-
put ProcessingClient as a RuleInputField and calling the RuleInputField.getText()
method. You can also retrieve any parameters to your custom Validator by calling the
RuleInputField.getValidatorParams() which returns a java.util.Map object con-
taining parameter names mapped to parameter values. For an example, take a look at
com.izforge.izpack.util.RegularExpressionValidator.

Set values in the RuleInputField can be preprocessed. At now you can specify a pro-
cessor class to pre process a value to be set at initial value of a RuleInputField. Syntax:

<spec set="0:defaultVal:classname" .../>

The class name is an optional value. The class must implement the Processor inter-
face.

Processing the Field Content

This feature needs to be documented.

Summary Example

<field type="rule" variable="test1">
<description align="left" txt="A description for a rule input
field."

id="description.rule.1"/>
<spec txt="Please enter your phone number:"

layout="(N:3:3) N:3:3 - N:4:4 x N:5:5"
resultFormat="specialSeparator" separator="."/>

<validator class="com.izforge.izpack.util.NotEmptyValidator"
txt="The phone number is mandatory!" />

<!--processor class=""/-->
</field>

Search

The search input field allows the user to choose the location of files or directories. It also
supports auto-detection of the location using a list of suggestions. The field is basically
a combobox with an extra button to trigger auto-detection (again).

106

Specification

The <description> tag is the same as with other fields
The <spec> tag supports the following attributes:

• filename - the name of the file or directory to search for

• type - what to search for

– file - search for a file
– directory - search for a directory

• result - what to return as the search result

– file - result of search is whole pathname of file or directory found
– directory - only return directory where the file was found (this is the

same as file when searching for directories)
– parentdir - return the full path of the parent directory where the file

was found

• checkfilename - the name of a file or directory to check for existence (this can
be used to validate the user’s selection)

Example

<field type="search" variable="java_sdk_home">
<description align="left"

txt="This is a description for a search
input field."
id="description.java_sdk_home"/>

<spec txt="Path to Java SDK:" checkfilename="lib/tools.jar"
type="file" result="directory">

<choice value="/usr/lib/java/" os="unix" />
<choice value="/opt/java" os="unix" />
<choice value="C:\Program Files\Java" os="windows" />
<choice value="C:\Java" os="windows" />
</spec>

</field>

Custom Actions

(by Klaus BARTZ)

Overview

The implementation of custom actions presume knowledge of java. Custom actions are
not a good starting point for learning java. Learners can use existent custom actions but
should not implement them as exercise.

107

In general the installation procedure is separated into several steps. The first step,
let’s call it the data collection phase, is getting specific data needed for the installation
process. Typically this is done by typing all neded data into one or more panels, if a GUI
is used, or automatically by reading the data from a config file. In general nothing will
be changed on the system until all needed data is obtained. But mostly - depending on
to the information, e.g. the destination path - different input panels are involved.

If all needed data is collected the second step will be perfomed, let us call it the action
phase. During this step the state of the locale machine will be changed, e.g. files will
be copied to the installation destination or some short cuts will be registered. Each of
this subsequent steps are denoted as actions. There are actions intended to be reused,
so called common actions, and actions for one special purpose only, so called custom
actions. In IzPack there are already some common actions, for example “file transfer”,
“parse” or “execute”.

The third step, the reporting phase, is normally represented by a panel that reports
the result state of the installation (OK, or not OK) and a simple good bye message.

With IzPack there are two ways to implement custom actions. Firstly it is always
possible to define a custom panel that perfoms the desired actions too. Secondly, and
that’s the new, custom actions are supported.

Panels still may be used for actions that are perfomed, e.g. before files are transferred
or after the “execute” action. But if the needed action depends on the selected or already
installed packages, this works also, but the implementation effort is much higher.

If the action should be performed for several amount of elements of a pack, using
custom actions will be more easy than using panels. Additional custom actions may be
defined for installation, but also for packaging and uninstallation purposes. If a custom
action is also needed for uninstallation purposes, it’ll be always a good idea to implement
a corresponding installation action as custom action, but not as panel.

How It Works

Custom actions are implemented as listeners. Each listener implements callback methods
that will be called at well-defined points. The method InstallerListener.afterFile
for example will be called after a file has been copied. There are different interfaces
intended for being used at packaging time, at installation time and at uninstallation
time.

Each interface is implemented by a class with the prefix “Simple” (e.g. SimpleCompil-
erListener) that implements all declared interface methods with an empty body. These
classes may be used as base classes for own listener implementations.

To apply custom actions to the installer, an entry in the apropriate install.xml file is
needed. The configuration of listeners starts with the facultative ELEMENT “listeners”
which can contain one or more ELEMENTs of “listener”. For a “listener” there are three
attributes which determine the “compiler”, “installer” and “uninstaller” custom action
pupose. Additionally it is possible to make the listener OS dependent using the “os”
ELEMENT.

If file related data will be set, the facultative ELEMENT “additionaldata” is defined

108

for the ELEMENTs“file”,“singlefile”and“fileset”. This data will be automatically moved
to the corresponding PackFile objects in the install.jar. Extraction and usage should be
implemented in a install custom action (see example).

Custom Action Types

Custom actions are intended to be used at packaging time, at installation time and at
uninstallation time. The interfaces are:

Custom action type Interface name

Packaging com.izforge.izpack.event.CompilerListener
Installation com.izforge.izpack.event.InstallerListener
Uninstallation com.izforge.izpack.event.UninstallerListener

Custom Actions At Packaging

• (constructor): only the default constructor will be used. It is called from Com-
piler just after creating the packager. Therefore initializing will be better during
in the first notify call.

• reviseAdditionalDataMap gives the facility to add data to each PackFile
object. This is the place where file related data can be transferred from the
install xml file into the install jar file. Although each key and value of the map
can be any type, but the class definitions of all used types must therfore be
contained in the installer jar file or in the VM’s classpath. In general strings
are the best choice for being used as keys or values. All keys must be unique
over all registered CompilerListeners. Each call of this method adds own key
value pairs to the given existenDataMap because more than one listener can
be used. If the given map is null, a new one will be created.

• notify is called at the beginning and at the end of each “add” method call
which is called in Compiler.executeCompiler.

109

Custom Actions At Installing Time

• (constructor): only the default constructor will be used. It is called from Unpacker.run
before unpacking.

• beforePacks will be called each time before an unpacking call is performed.

• beforePack is called before a package is installed. Pack object and the number
of the pack are passed.

• isFileListener determines whether the next four methods are called or not.
This is a little performance optimizing.

• beforeDir is called before a directory is created. In this case, when file listeners
exist, directories are created recursively and the method is called at each step.
The file and the current PackFile object are passed.

• afterDir is called directly after the directory creation.

• beforeFile is called before a file is created. The file and PackFile object are
passed as parameters.

• afterFile is the best place to perform file related actions. The given PackFile
objects contains the additional data which was set at packaging.

• afterPack will be just called after the pack is closed.

• afterPacks is the last step before the handler will be stopped.

110

Custom Actions At Uninstalling Time

• (constructor) : only the default constructor will be used. It is called from
Destroyer.run as first call.

• beforeDeletion will be called after execute files was performed. The given list
contains all File objects which are marked for deletion.

• isFileListener determines whether the next two methods are called or not.

• beforeDelete is the method which, is called before a single file is deleted. The
File object is given as parameter.

• afterDelete will be invoked after the delete call for a single file.

• afterDeletion is the last call before the cleanup of created data is performed.

Package Path

Custom actions must always implement one of the given listener interfaces. As mentioned
above, it is also possible to derive from one of the “Simple” listeners. The package path is
facultative, only the class name must be unique over all custom actions. The preparation
of a custom action for providing it with an installation is very similar to panels. Custom
actions must also be packed into a jar file with the name of the custom action class
name. This jar file should be placed in [IzPackRoot]/bin/customActions, may be

[IzPackRoot]/bin/customActions/MyCompilerListener.jar
[IzPackRoot]/bin/customActions/MyInstallerListener.jar
[IzPackRoot]/bin/customActions/MyUninstallerListener.jar

In the default Ant definition file (build.xml) there are some targets for this stuff.

111

Native Libraries for Uninstallation

If a custom action uses JNI at installation time, often the associated uninstall custom
action needs JNI too. For this situation it is possible to declare a native library for
unstallation. The only work to do is to add a stage attribute to the native tag in the
install xml file like

<!-- The native section. We specify here our os dependant
libs..--> <native type="3rdparty"
name="MyOSHelper.dll"stage="both" >

<os family="windows" />
</native>

The needed additional classes are packed into lib/uninstaller-ext.jar. If a native li-
brary is defined for uninstallation, this file will also be packed into the installer.jar as
IzPack.unistaller-ext and used at its right position.

What You Have To Do

Follow the steps that are needed to create and use custom actions with the “normal”
source environment (not standalone compiler) using Ant. Of course, it works also with
the standalone compiler.

Custom Actions at Packaging (CompilerListener)

• Implement com.izforge.izpack.event.CompilerListener or extend com.izforge.izpack.event.SimpleCompilerListener.
Place it as ‘‘ [IzPackRoot]/src/lib/[MyPackagePath]/MyCompilerListener.java‘‘.

• Add a “build-compiler-listener” macro call in to the build.listeners tar-
get in [IzPackRoot]/src/build.xml. Note that the name attribute value in the
build-instealler-listener must match CompilerListener implementation class
name (not including the package). You should include the actual Listener im-
plementation, as well as any other classes required by the listener.

<build-compiler-listener
name="MyCompilerListener">

<include
name="[MyPackagePath]/MyCompilerListener.java"/>
<include
name="[MyPackagePath]/SomeOtherHelperClass.java"/>

</build-compiler-listener>

• Run [IzPackRoot]/src/build.xml. An ant alone will execute the required
targets.

• Add a “listeners” ELEMENT with a “listener” ELEMENT with a “compiler”
attribute in to [MyProjectPath]/install.xml

112

<listeners>
<listener compiler="MyCompilerListener" />

<listeners>

• Compile with the following command, or an ant task you have set up.

java -jar [IzPackRoot]/lib/compiler.jar -HOME [IzPackRoot]
[MyProjectPath]/install.xml -b [MyProductPath] -o
[MyBuildPath]/install.jar

• Test it

Custom Actions at Installation Time (InstallerListener)

Perform the same steps as above, replace all occurrences of “CompilerListener” with
“InstallerListener” and “compiler” with “installer”.

Custom Actions at Uninstallation Time (UninstallerListener)

Perform the same steps as above, replace all occurrences of “CompilerListener” with
“UninstallerListener”and “compiler” with “uninstaller”.

Example

Let us say, we want to set access rights for files and directories on Unix. The Java sources
are placed in the directory [IzPackRoot]/sample/src/com/myCompany/tools/install/listener.
There are the files ChmodCompilerListener.java and ChmodInstallerListener.java.

• Copy the files to [IzPackRoot]/src/lib/com/myCompany/tools/install/listener

• In [IzPackRoot]/src/build.xml there are the lines

<!-- CUSTOM ACTION test START
CUSTOM ACTION test END -->

Uncomment them (activate the lines between them).

• Build IzPack new.

• Compile a test installation with

java -jar [IzPackRoot]/lib/compiler.jar -HOME [IzPackRoot]
[IzPackRoot]/sample/listener/install.xml
-b [IzPackRoot]/sample/listener -o
[IzPackRoot]/sample/listener/install.jar

• Install it

java -jar install.jar

113

Ant Actions (InstallerListener and UninstallerListener)

In this section the common ant task custom actions are described in detail. It is only for
developers who are not acquainted with IzPack or it’s custom actions. In addition to the
basics there are some recapitulations of the common custom action techniques and some
hints for pitfalls. In the package com.izforge.izpack.event there are the ant related
custom actions AntActionInstallerListener and AntActionUninstallerListener.
As recapitulation, to add any custom action a reference in install.xml will be needed, as
example:

<listeners>
<listener installer="AntActionInstallerListener"

uninstaller="AntActionUninstallerListener" />
</listeners>

For all referenced listeners a jar file with the same name must exist in [IzPackRoot]/bin/customActions.
If compilation (packaging) fails with a “not found” error, first verify, that the jar file ex-
ists. If not, create it. With this custom action it is possible to perform ant calls at
installation and/or uninstallation time. It is not only a wrapper for a comand-line ant
call, but also an intersected description file defining what target of the ant build file
should be performed at what time of (un)installation and specifies which properties for
what IzPack pack are to be used. The intersected description file is written as XML, the
corresponding dtd is placed in src/dtd/event/antaction.dtd. The description file should
be declared as a resource in the install.xml with the id ‘‘ AntActionsSpec.xml‘‘ e.g.

<resources>
...
<res id="AntActionsSpec.xml"
src="myInstallSpecs/MyAntActionsSpec.xml" />
...

</resources>

The precise spelling of the id is important. The base path of src is the installation
project path. If you want to use ant, you have to specify it here. IzPack is designed for
running without dependencies on external software or libraries. Therefore it is necessary
to include everything needed, in this case ant self. The field <jar> in installation.xml is
predestinated for such cases, e.g.

<jar src="jar/ant/ant.jar" stage="both" />

Be aware, that an “extended” ant use needs more than one jar, for example often
xercesImpl.jar. If an obscure“class not found”exception is raised during testing, check
first for missing jar files. For supporting uninstallation the jar field was extended by the
attribute stage. If an ant uninstaller custom action is used, the uninstaller also needs
the jar files. If ‘‘ stage‘‘ is “both” or “uninstall”, the contents of the referenced jar file
will be packed into uninstaller.jar. Be aware that not the jar file itself, but the contents

114

of it are required. This implies, that the paths of the contained files are unique and the
information in meta-inf/Manifest.mf will be lost.

The Basic XML Struture

An ant action will be defined in the resource with the id “AntActionsSpec.xml”. Some-
times it will help to lock into [IzPackRoot]/src/dtd/event/antaction.dtd or validate
a written xml file with the dtd.

On this xml file a substitution will be performed using all defined IzPack variables. It
is performed just before processing the packs. This is a common way of loading spec files
into custom actions. For more information see method com.izforge.izpack.util.SpecHelper.readSpec.
If you want to substitute some custom item, simply add a variable via idata.setVariable
in a custom panel before InstallPanel. The given variable name (id) should be written
into the xml file in the common variable notation.

The top level XML section is called <antactions>. Only one is possible. The <antactions>
are segregated in one or more <pack> elements. The single attribute <name> of the <pack>
corresponds to the same structure in install.xml (for more information see also instal-
lation.dtd). Only the “things” included in the <pack> are performed, if a pack with the
same name was chosen to be installed. The “things” to be done to self are defined by the
element <antcall> (without ssss).

The <antcall> takes the following attributes:

• order: required. Determine at what point of installation the antcalls defined
by element target should be performed. Possible are beforepack, afterpack,
beforepacks or afterpacks. Be aware that with beforepack(s) there are no
installed files and also no installed build file. With this order only preexistent
build files are useable.

• uninstall_order: optional. Determine at what point of uninstallation the antcalls
defined by element uninstall_target should be performed. Possible are beforedeletion
and afterdeletion. As opposed to the behaviour of order the referenced files
are also accessible in the order afterdeletion. The uninstaller action copies
the files into tempfiles before deletion which are marked as deleteOnExit.

• quiet: optional. To quit or not. Possible are yes or no. Default is no.

• verbose: optional. To output verbose information or not. Possible are yes or
no. Default is no.

• logfile: optional. Path of the file for logging should be performed. The logfile
should be not marked for uninstallation otherwise it will be deleted too.

• buildfile: required. Path of the file which contains the antcall. This is the file
you normally use as -buildfile during an ant call via the command line. In
this file variables are not substituted. For substitution there are properties in
ant which can be used. Never write an IzPack variable in an ant buildfile.

115

• messageid: optional. A string ID which refers to bin/langpacks/installer/<lang>.xml.
If it is defined, the message will be displayed in the InstallPanel whilst perform-
ing the ant call.

In addition to the possible attributes there are some elements. All elements can be
defined more than one time in one <antcall>. All are optional, but with no <target>
element the <antcall> makes no sense. Do not confuse the following: “required”s are
related to the attributes of the elements, not to the elements themselfs.

<property>: define a property

Property to be used with all target and uninstall_target which are defined for this
antcall.

• name: required. The name (id) of the property.

• value: required. The value of the property.

<propertyfile>: define properties in a file

Properties to be used with all targets and uninstall targets which are defined for this
antcall given by the path of a properties file.

• path: required. Path of a file which contains properties in the syntax which is
used by ant. Some ant calls need properties files. For these this element is used.
One way to fill specific data into it is to create a new file in a custom panel and
fill it with values given by input fields. The file path can be set at installation
time, if there is a variable in AntActionSpec.xml and an IzPack variable was
defined before InstallPanel. That file can be only created with deleteOnExit, if
no <uninstall_target> was defined in this ‘‘ <antcall>‘‘. This implies, that
other <antcall>‘‘s can have a ‘‘<uninstall_target>.

<target>: target to call at installation

Targets to perform with this antcall at installation time. The targets should be defined
in the given buildfile or else an ant exception will be raised. This is that what you use, if
you don’t want to perform the default target. e.g. cleaning the IzPack project with ant
clean

• name: required. The name of the target.

<uninstall_target>: target to call on uninstallation

Targets to perform with this antcall at uninstallation time. The targets should be defined
in the given buildfile otherwise an ant exception will be raised. With this target it will
be possible to undo the things done at installation time.

• name: required. The name of the uninstall target.

116

Registry access (InstallerListener and UninstallerListener)

The event package of IzPack contains an installer and an uninstaller listener for Windows
registry access. The listeners uses the separated pack com.coi.tools which is also available
as source under the src subtree of IzPack. The registry will be called by JNI.

There is no support from the IzPack project of this feature for Windows 95, Windows
98 and Windows ME. Please check the patches at http://jira.codehaus.org/browse/IZPACK-
58 if you need to support those platforms.

The registry stuff was implemented in all conscience, but certainly WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND

The listeners themselves are only able to write into the Windows registry at installation
and delet the writing at uninstall time. But it is also possible to use the registry handler
as a registry reader in custom panels or costum actions. The CheckedHelloPanel reads
the registry and can be used as example for it.

To add registry support to an installation some changes in the installation defini-
tion file (often called‘‘install.xml‘‘) are to be made. First the declaration of the listener
themselves:

<listeners>
<listener installer="RegistryInstallerListener"

uninstaller="RegistryUninstallerListener" >
<os family="windows"/>

</listener>
</listeners>

It is also recomanded to add the uninstaller listener because it is usual to cleanup the
registry at uninstallation. The listeners are only used on Windows, therefore we declare
it.

As with other listeners a jar file with the same name has to exist in [IzPackRoot]/bin/customActions.
If compilation (packaging) fails with an“not found”error, verify, that the jar file exists. If
not, create it. The jar files are RegistryInstallerListener.jar and RegistryUninstallerListener.jar.

As second change in install.xml we have to declare the native part JNI needs the
dll

<native type="3rdparty" name="COIOSHelper.dll" stage="both">
<os family="windows"/>

</native>

The dll should be placed in [IzPackRoot]/bin/native/3rdparty. The stage “both”
marks this dll not only to be put into the installation jar file but also to be put into
the uninstallation jar file. This will automatically be performed by the packager and
installation.

With these two changes the registry support will be incorporated into your installa-
tion. Without any more actions an uninstall key will be crated in the registry at the
installation. If you open the software manager of Windows, there will be an entry with
the variables $APP NAME $APP VER, e.g.:

117

http://jira.codehaus.org/browse/IZPACK-58
http://jira.codehaus.org/browse/IZPACK-58

IzPack 4.6.8 (build 2007.02.15)

The variables will be defined from the entries <appname> and <appversion> in the
<info> element of the installation definition file.

If you would like to have more informations in the uninstaller key or to create other
keys or values in the registry, you should create a specification file. The file should be
then refered to in install.xml as resource:

<resources>
...
<res src="mySubPath/MyRegistrySpec.xml"
id="RegistrySpec.xml"/>

</resources>

The id has to be RegistrySpec.xml. The real file name is not of any importance but
should be written the same as in your source tree. It will be securer if you do not use
special chars like blanks or umlauts. Be aware! If you forget to refer to registrySpec.xml
in your install.xml no exception will be made because this is a facultative file

The Basic XML Struture

The specification file for registry entries will be defined in the resource with the id
“ReigstrySpec.xml”. Sometimes it will help to lock into [IzPackRoot]/src/dtd/event/registry.dtd
or validate a written xml file with the dtd.

On this xml file a substitution will be performed using all defined IzPack variables. It
is performed just before processing the packs. This is a common way of loading spec files
into custom actions. For more information see method com.izforge.izpack.util.SpecHelper.readSpec.
If you want to substitute some custom item, simply add a variable via idata.setVariable
in a custom panel before InstallPanel. The given variable name (id) should be written
into the xml file in the common variable notation.

The top level XML section is called <registry>. Only one is possible. The <registry>
is segregated in one or more <pack> elements. The single attribute <name> of the <pack>
corresponds to the same structure in install.xml (for more information see also instal-
lation.dtd). Only the “things” included in the <pack> are performed, if a pack with the
same name was chosen to be installed. Valid “things” are <key> <value>.

The registry stuff self allows to create keys and values directly under a registry root.
But Windows self allows this not on “real” roots like HKEY LOCAL MACHINE or
HKEY USERS. Only link like roots as HKEY CLASSES ROOT are writeable. A try
e.g. on HKLM will be cause an exception and the installation fails. The error number
in this case normally will be 87 with the meaning “wrong parameter”, not “permission
denied”.

We do NOT recommend to create a key or a value directly on a registry root. IzPack al-
lows it now as a result of some user requests about it. Most it is not needed. E.g. an exten-
sion entry under HKEY CLASSES ROOT is really an entry on HKEY LOCAL MACHINESoftwareClasses.
Why not write directly there?Reading is in opposite to writing no problem.

118

<key>: define a key

Key to be set at installation time into the Windows registry.

• keypath : required. The path of the key in Windows syntax without the root.
If the key should be placed directly under a registry root (not recommended;
often not possible)) write the key name without any backslash.

• root : required. The root of the key as symbol. Valid is one of HKCR HKCU
HKLM HKU HKPD HKCC HKDDS.

<value>: define a value

Value to be set at installation time into the Windows registry.

• name : required. The name of the value to be set or modified without a path.
The default value will be written as the empty string “”.

• keypath : required. The key path under which the value should be placed in
Windows syntax without the root and value name. If the key of the value should
be placed directly under a registry root (if not exist, not recommended; often
not possible)) write the key name without any backslash. If the value should
be placed directly under a registry root (also not recommended and often not
possible) write as keypath the empty string “”.

• root : required. The root of the key as symbol. Valid is one of HKCR HKCU
HKLM HKU HKPD HKCC HKDDS.

• override : optional. Override an existent value or not. Valid is “true” or “false”,
default is “true”.

• Contents part: accurately one of the following content elements should be
defined. It implicit defines the type of the value.

– string : contents for value to be set if it is a string.
– dword : contents for value to be set if it is an integer (Windows DWORD).

Only digits are valid. “48” is valid, “0x30” will be raise an NumberFor-
matException from java.lang.Long.parseLong.

– <bin> : element to handle one “line” of binary data.
∗ data : contents for value of type BINARY written as comma

separated list of hex. Only hex-digits are valid. “48, f4” is valid,
“0x48, 0xf4” will be raise an NumberFormatException from
java.lang.Integer.parseInt.

– <multi>: element to handle one contents string for MULTI STRINGs.
∗ data : the contents for the element <multi>.

In the case of string values being updated, it is possible to reuse the old value and have
it for substitution through the OLD_KEY_VALUE variable, like in the following example:

119

<value name="PATH"
keypath="Environment"
root="HKCU"
string="$OLD_KEY_VALUE;"$INSTALL_PATH\bin""/>

<value name="PATH"
keypath="SYSTEM\CurrentControlSet\Control\Session Manager\Environment"
root="HKLM"
string="$OLD_KEY_VALUE;"$INSTALL_PATH\bin""/>

Maybe the descriptions for type BINARY and MULTI STRING are not fully descrip-
tive. Therefore as example the test entries in the registry specification file of IzPack:

<registry>
...
<pack name="Core">
<value name="Path"
keypath="SOFTWARE\IzForge\IzPack\$APP_VER"
root="HKLM"
string="$INSTALL_PATH"/>

<value name="DWORD"
keypath="SOFTWARE\IzForge\IzPack\$APP_VER"
root="HKLM"
dword="42"/>

<value name="BIN"
keypath="SOFTWARE\IzForge\IzPack\$APP_VER"
root="HKLM" >
<bin data="42, 49, 4e, 20, 54, 45, 53, 54" />
<bin data="42, 49, 4e, 20, 54, 45, 53, 54" />

</value>
<value name="MULTI"
keypath="SOFTWARE\IzForge\IzPack\$APP_VER"
root="HKLM" >
<multi data="A multi string with three elements" />
<multi data="Element two"/>
<multi data="Element three"/>

</value>
</pack>

</registry>

Extended Uninstall Key

There is a special pack named UninstallStuff. If a pack will be declared like

<name="UninstallStuff">

120

the incorporated elements will be used for creating the uninstall key and values instead
of the build-in behavior. This pack name should be not used at an other point of the
installation. It is a virtual and should be used only in RegistrySpec.xml.

The registry handler self cannot ensure the uniqueness of an uninstaller key. There is
the special panel CheckedHelloPanel which does it. If no pack UninstallStuff will be
used, this will be performed full automatically. If the pack was declared, all keypaths
under it should be written as following:

...
<value name="DisplayName"
keypath="SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\$UNI
NSTALL_NAME"
root="HKLM"
string="$UNINSTALL_NAME"/>

...

The IzPack variable $UNINSTALL_NAME will be defined in the CheckedHelloPanel.
With the “normal” HelloPanel it is undefined and the uninstall key catches the name
“$UNINSTALL NAME”.

Uninstall Behavior

During uninstallation the deletion or modification of written keys or values will be per-
formed depending to the following rules:

• A review of the registry will be performed only on supported operating systems
(current only on Windows).

• A review of the registry will be performed only if the registry stuff was bound
for uninstallation.

• Keys: Keys can only be deleted, a modification is not possible.

– A previous existent key will be NOT deleted.
– A newly created key will be deleted, if...
∗ no new values or subkeys are added after installation.
∗ no changes are made at the contents of values after installation.

With other words: if under the key something was changed between
installation and uninstallation, the key will be persist.

• Values:

– A newly created value will be deleted, if the contents at uninstall time
is the same as after installation.

– The contents of a previos existent value will be changed to the previous
contents (the contents before installation) if the contents at uninstall
time is the same as after installation.

121

In other words: if the contents of a value was changed between installation and
uninstallation this contents will be persist. There is no handling of parts of the
contents (important for type MULTI STRING).

This conservative behavior cannot be changed to a user dependant voting because
there is no user interface for custom actions at uninstall time. Additional the registry
handler to not support voting.

Examples

There are the files

[IzPackRoot]/src/dist-files/IzPack-install-reg.xml
[IzPackRoot]/src/dist-files/RegistrySpec.xml

IzPack-install-reg.xml contains additional to the normal definition the stuff needed
to create an IzPack installer which sets on Windows an extended uninstall key and some
keys and values under a “private” key. Compare with the “normal” installation definition
of IzPack.
RegistrySpec.xml will be referred by IzPack-install-reg.xml as resource. It con-

tains the special pack named UninstallStuff for Izpack and defines some additional
keys and values.

Summary Logger (InstallerListener)

The listener SummaryLoggerInstallerListener can be used to log the summary of pan-
els into a file. To use it, add following element to the listener section of your installation
config file.

<listeners>
<listener installer="SummaryLoggerInstallerListener"

uninstaller="SummaryLoggerInstallerListener" >
<os family="windows"/>

</listener>
</listeners>

The default path is

$INSTALL_PATH/Uninstaller/InstallSummary.htm

It can be changed with the subelement summarylogfilepath of the element info of
the installation description file. As example:

<info>
...
<summarylogfilepath>

$INSTALL_PATH/Uninstaller/MySummary.htm

122

</summarylogfilepath>
</info>

IzPack utilities

The IzPack project includes a set of utilities that you may find useful.
These projects live outside the regular IzPack installer Subversion repository. You

can access it from http://svn.berlios.de/svnroot/repos/izpack/izpack-utils/ instead of
http://svn.berlios.de/svnroot/repos/izpack/izpack-src/ for IzPack itself.

They will be shipped in the official IzPack releases under their own pack.

Windows executable wrapper (izpack2exe)

Description

The 7-Zip project (see http://www.7-zip.org/) provides a so-called SFX for installers,
i.e., an image that can be use to create self-extracting Windows executables. Once its
content has been extracted, such a self-extracting executable can launch an executable
or a file. In the later case, it is assumed that there exists an association between a file
extension and a software component.

7-Zip SFX for installers works as follows:

1. an executable image is provided

2. a configuration file has to be written, specifying among other things the
executable or the file to be launched after the extraction phase

3. a 7-Zip archive containing the files (including the executable of file to be
launched)

4. these files simply need to be concatenated to form a SFX Windows exe-
cutable.

The IzPack Windows executable wrapper takes an IzPack-generated installer JAR
file, and wraps it inside a Windows SFX executable. This has several advantages, among
these two ones:

1. some users may find it strange to have a JAR and not an executable

2. by naming it with setup or install , Windows VISTA will perform a rights
elevation whereas IzPack cannot enforce it when launched as a regular JAR.

And of course, you can ship a JAR and a Windows executable from the very same
IzPack installer descriptor!

We have customized the SFX image from the 7-Zip project as follows:

• we have changed the icon

• we have customized some strings to mention that this is a customized version.

123

http://svn.berlios.de/svnroot/repos/izpack/izpack-utils/
http://svn.berlios.de/svnroot/repos/izpack/izpack-src/
http://www.7-zip.org/

While the rest of the work is licensed under the Apache License version 2, the sole
SFX module is licensed under the Lesser GNU General Public License version 2 or later
as required by the 7-Zip project.

Requirements

izpack2exe is written in Python. It depends on 7-Zip and optionnaly UPX, a tool that
can compresses executables.

In official IzPack releases, we provide this tool batteries-included on Windows, i.e., we
will provide:

• izpack2exe as a Windows executable, so that you don’t need to install Python,
and

• 7-Zip and UPX executables, so you don’t have to download them.

Usage

The usage is quite easy:

usage: izpack2exe.py [options]

options:
-h, --help show this help message and exit
--file=FILE The installer JAR file
--output=OUTPUT The executable file
--with-7z=P7Z Path to the 7-Zip executable
--with-upx=UPX Path to the UPX executable
--no-upx Do not use UPX to further compress the output

A typical wrapping will be done like:

izpack2exe --file=installer.jar

Mac OS X Application bundle wrapper (izpack2app)

Description

izpack2app is the Mac OS X brother of izpack2exe. It bundles a JAR installer inside
an application bundle, so that your installer will look like a regular Mac OS X application.

To do that, we started from the Mac OS X Jar Bundler tool that you can find under
/Developer/Java. We bundled a Jar installer, then stripped it. Indeed, an application
bundle is nothing else but a structured set of files and directories.

What izpack2app does is simply:

1. copy the bundle files structure,

2. put your Jar at the good place, and

3. edit the Info.plist to reference your Jar.

124

Requirements

izpack2app is written in Python. It does not require any third-party module to work.
Python is bundled with Mac OS X and is mainstream on Linux and other Unix variants.
We ship it as a Windows executable in the official IzPack releases (and of course also as
a Python application!).

Usage

The usage is straightforward:

izpack2app.py installer.jar Installer.app

wraps installer.jar as Installer.app

Apache License, Version 2.0

Overview

IzPack is license under the terms of the Apache License version 2.0.
Please note that IzPack may use some third-party libraries that are not released under

the same conditions (see the legal/ directory of an IzPack source or binary distribution).
Finally, note that IzPack is not affiliated to the Apache Software Foundation.

License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the

125

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

126

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained

127

within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

128

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

129

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Documentation license

This documentation is licensed under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported License.

The details can be found at http://creativecommons.org/licenses/by-sa/3.0/, with the
complete license terms being available from http://creativecommons.org/licenses/by-
sa/3.0/legalcode

CookBooks

1. How To create an ODBC connection with IzPack (by Fabrice Mirabile)

a. Problem

ODBC can be used as a layer between app servers and databases. It is quite convienent to
setup an ODBC connection at installation time when the installer can actually retrieve
all info needed for such setup. How can we achieve that? And for which OS ?

b. Solution

After looking at many solutions, I found one that is very convenient in the sense that it
applies to both Windows and UNIX environment. In fact, the Windows ODBC Manager
applet offers two type of setup:

• The system source

• The file source

Basically, the system source writes in the registry and unfortunately does something
else that I couldn’t figure out. However, the file source is very similar to ODBC.ini under
UNIX. In ODBC.ini, you can define all connections into this file. For windows it’s a bit
different as you will have as many files as connections. But even though, there’s a trick!

A fileDSN (the name given to this type of connection) for a connection to an Oracle
database will look like this :

[ODBC]
DRIVER=Oracle in OraHome92
UID=%{UID}
PWD=%{PWD}
DBQ=%{DBName}

130

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

SERVER=%{DBName}

Therefore you can realize straightforwardly that by changing the UID and PWD you
will make your connection point to any schemas you want.

In my company’s software, we use ODBC to make the connection between the appli-
cation and the database. Therefore, we use a batch to launch the server with a bunch of
parameters. One of them is the ODBC DSN. This one, using fileDSN, should be defined
as follows:

SET DSN=filedsn=$INSTALL_PATH\whateveryoulike.dsn

A very nice trick is to put in this batch the UID and the PWD so that it’s not needed
in the file directly and therefore you make the installer create different batch loaders for
different Schemas ! That’s very usefull when you have on the same DB many schema
and you want the same application server to access both of them without reinstalling
the whole thing !

In the following discussion, I’ll show you an example on how to prepare the installer
for creating a file at the root of the installation path which will permit to connect to an
Oracle DataBase.

c. Discussion

Install.xml:
<file src=“dsn.dsn” targetdir=“$INSTALL PATH”/> <parsable type=“shell” target-

file=“$INSTALL PATH/whateveryoulike.dsn”/>
UserInputSpec.xml:

<userInput>
<panel order="0">

<field type="staticText" align="left" txt="Server Only:
Enter the settings for the ODBC Connection (DSN) environment variable:"
id="staticText3.text"/>

<field type="divider" align="center"/>
<field type="text" variable="UID">

<description align="left" txt=""
id="description2.text"/>

<spec txt="-> Enter UID:" id="text.label"
size="15" set=""/>

</field>
<field type="divider" align="center"/>
<field type="password" variable="PWD">

<description align="left" txt=""
id="description3.text"/>

<spec>
<pwd txt="-> Type the password for the

131

connection:" id="pwd.label" size="10" set=""/>
<pwd txt="-> Retype the password for the

connection:" id="pwd.label2" size="10" set=""/>
</spec>
<validator

class="com.izforge.sample.PWDValidator" txt="Both versions of the
password must match" id="error.label"/>

<processor
class="com.izforge.sample.PWDEncryptor"/>

</field>
<field type="space" align="center"/>
<field type="divider" align="center"/>
<field type="space" align="center"/>
<field type="text" variable="DBName">

<description align="left" txt=""
id="description4.text"/>

<spec txt="-> Enter the name of the Database:"
id="text.label" size="15" set=""/>

</field>
<field type="text" variable="DBPortNo">

<description align="left" txt="-> Enter the port
number for the database connection" id="description5.text"/>

<spec txt="(usually 1521 for oracle and 1433 for
MS SQL Server)" id="text.label" size="15" set=""/>

</field>
</panel>

</userInput>

BatchLoader.bat:

SET DSN=filedsn=$INSTALL_PATH\whateveryoulike.dsn;UID=$UID;PWD=$PWD
start $INSTALL_PATH\yourpath\yourapp

whateveryoulike.dsn:

[ODBC]
DRIVER=Oracle in OraHome92
DBQ=%{DBName}
SERVER=%{DBName}

Now during the installation the user will be prompt for the parameters (UID, PWD...)
and the file will be parsed.

Pretty simple !
What about SQL Server or other db you would say ? Well, there’s many ways to do

it, a simple would be to have a skeleton for kind of db and then during the userinput ask

132

for the database type (DB2, SQLSERVER,ORACLE...) and switch to the corresponding
file before parsing.

Let’s imagine you choose SQL Server in the userinputpanel, then instead of copying
whateveryoulike.dsn, you can copy whateveryoulikeforMS.dsn which looks like this:

[ODBC]
DRIVER=SQL Server
WSID=%{DBName}
APP=Microsoft Open Database Connectivity
SERVER=%{DBName}

In our installer, we create four packs, one for each DataBase. These packs copy the
corresponding file and parse them. Again, pretty simple !

Another remark, is that in this way if you choose more than one pack you could setup
more than one connection at once on different DB as long as UID and PWD are the
same. If not you’ll need a little trick...

I hope this helps and if anyone has a question, don’t hesitate to contact me via
http://developer.berlios.de/sendmessage.php?touser=12462 or post into the user/devel
list.

Done by Fabrice Mirabile on 20th of april 2005

2. Work around for pack and process dependence And Execution of Java
Classes that runs SQL/PLSQL

a. Problem

I’ve encountered in many cases the need to have a relation between job being executed
with the processpanel and a pack. Since IzPack doesn’t provide yet such feature I worked
out something that does the job.

I’ll explain it using an example on how to execute a java class that runs SQL state-
ments.

b. Solution

Here is what you will need:

• UserInputSpec.xml

• Install.xml

• ProcessPanel.Spec.xml

Which are at the root of the installation folder.
Then you could have a folder with the SQL Stuffs, let’s call it update. So in update

you’ll have:

• JDBCGeneral.class, I use JDBC to make a DataBase connection

133

• launchsql.bat, which runs the class with all kind of arguments

• ojdbc14.jar, oracle JDBC drivers

• mssqlserver.jar, msutil.jar and msbase.jar, SQL server drivers (You could have
also drivers for other DB such as DB2 or Sybase)

• Two folders for the SQL scripts:

– sqlsms, for SQL Server scripts
– sqlsoracle, for oracle scripts

Inside those folders you can have any number of SQL scripts. The scripts can be
written in this way for example: delete from task category; insert into task category
values(’LoadSource’,’Data Source Loading’,’source loader task.bat’);

Once you have this tree of files prepared you need to setup each file. The idea is that the
install should copy on the client side the SQL scripts depending on the pack(s) chosen,
plus the class and the batch file and then run the batch using the processpanel job.
Therefore only the scripts for a specific pack would be run and there is the dependence
we’re looking for!

c .Discussion

Install.xml:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<installation version="1.0">
....
<resources>

<res id="ProcessPanel.Spec.xml"
src="ProcessPanel.Spec.xml"/>
<res id="userInputSpec.xml" src="UserInputSpec.xml"/>

....
</resources>
<panels>
.....
<panel classname="UserInputPanel"/>
<panel classname="ProcessPanel"/>

.....
</panels>
<packs>

......
<pack name="16-12-04" preselected="no" required="no"
os="windows">
<description>jar and SQL</description>
<singlefile src="updates\sqlsms\sql161204.txt"
target="$INSTALL_PATH\updates\sqlsms\sql161204.txt"/>

134

<singlefile src="updates\sqlsoracle\sql161204.txt"
target="$INSTALL_PATH\updates\sqlsoracle\sql161204.txt"/>
<file src="uninstaller.bat"
targetdir="$INSTALL_PATH\Uninstaller"/>
<file src="uninstall.ico"
targetdir="$INSTALL_PATH\Uninstaller"/>
<singlefile src="updates\msbase.jar"
target="$INSTALL_PATH\updates\msbase.jar"/>
<singlefile src="updates\mssqlserver.jar"
target="$INSTALL_PATH\updates\mssqlserver.jar"/>
<singlefile src="updates\msutil.jar"
target="$INSTALL_PATH\updates\msutil.jar"/>
<singlefile src="updates\ojdbc14.jar"
target="$INSTALL_PATH\updates\ojdbc14.jar"/>
<singlefile src="updates\jdbcgeneral.class"
target="$INSTALL_PATH\updates\JDBCGeneral.class"/>
<singlefile src="updates\class\axiom_lang.jar"
target="$INSTALL_PATH\class2\axiom_lang.jar"/>
<singlefile src="updates\class\axiom_lib.jar"
target="$INSTALL_PATH\class2\axiom_lib.jar"/>
<singlefile src="updates\launchsql.bat"
target="$INSTALL_PATH\updates\launchsql.bat"/>
<parsable
targetfile="$INSTALL_PATH\updates\launchsql.bat"/>
<parsable
targetfile="$INSTALL_PATH\Uninstaller\uninstaller.bat"/>

</pack>

<pack name="17-12-04" preselected="no" required="no"
os="windows">
<description>jar and SQL</description>
<singlefile src="updates\sqlsms\sql171204.txt"
target="$INSTALL_PATH\updates\sqlsms\sql171204.txt"/>
<singlefile src="updates\sqlsoracle\sql171204.txt"
target="$INSTALL_PATH\updates\sqlsoracle\sql171204.txt"/>
<file src="uninstaller.bat"
targetdir="$INSTALL_PATH\Uninstaller"/>
<file src="uninstall.ico"
targetdir="$INSTALL_PATH\Uninstaller"/>
<singlefile src="updates\msbase.jar"
target="$INSTALL_PATH\updates\msbase.jar"/>
<singlefile src="updates\mssqlserver.jar"
target="$INSTALL_PATH\updates\mssqlserver.jar"/>
<singlefile src="updates\msutil.jar"

135

target="$INSTALL_PATH\updates\msutil.jar"/>
<singlefile src="updates\ojdbc14.jar"
target="$INSTALL_PATH\updates\ojdbc14.jar"/>
<singlefile src="updates\jdbcgeneral.class"
target="$INSTALL_PATH\updates\JDBCGeneral.class"/>
<singlefile src="updates\launchsql.bat"
target="$INSTALL_PATH\updates\launchsql.bat"/>
<singlefile src="updates\class\axiom_lang.jar"
target="$INSTALL_PATH\class2\axiom_lang.jar"/>
<singlefile src="updates\class\axiom_lib.jar"
target="$INSTALL_PATH\class2\axiom_lib.jar"/>
<parsable
targetfile="$INSTALL_PATH\updates\launchsql.bat"/>
<parsable
targetfile="$INSTALL_PATH\Uninstaller\uninstaller.bat"/>

</pack>
.....
</packs>

</installation>

UserInputSpec.xml:

<userInput>
<panel order="0">
<field type="title" align="Left" txt="Database Connection
Parameters" bold="true" size="1" id="DBParam"/>
<field type="staticText" align="left" txt="The following
information are needed for making the connection with the database."
id="staticText1.text"/>
<field type="staticText" align="left" txt="Careful These
fields are case sensitive !" id="staticText2.text"/>
<field type="divider" align="center"/>
<field type="divider" align="center"/>
<field type="combo" variable="SQLServerType">
<spec txt="Select the type of DataBase you’re using "
id="SqlServerType.spec">
<choice processor="" txt="Not Needed !"
id="SQLServerType.notneeded" value="None" set="true"/>
<choice processor="" txt="Oracle"
id="SQLServerType.Oracle" value="Oracle"/>
<choice processor="" txt="Microsoft SQL Server"
id="SQLServerType.MS" value="SQLServer"/>
</spec>

</field>

136

<field type="text" variable="ServerNameTextInput">
<description align="left" txt="" id="description1.text"/>
<spec txt="Enter server name " id="text.label" size="15"
set="localhost"/>

</field>
<field type="divider" align="center"/>
<field type="text" variable="PortNbTextInput">
<description align="left" txt="-> Enter the port number
for the database connection" id="description5.text"/>
<spec txt="(usually 1521 for oracle and 1433 for MS SQL
Server)" id="text.label" size="15" set="1433"/>

</field>
<field type="divider" align="center"/>
<field type="text" variable="DBNameTextInput">
<description align="left" txt="" id="description3.text"/>
<spec txt="Enter Database name " id="text.label"
size="15" set="axiom"/>

</field>
<field type="divider" align="center"/>
<field type="text" variable="UserNameTextInput">
<description align="left" txt="" id="description4.text"/>
<spec txt="Enter Schema/User name for the Database "
id="text.label" size="15" set="axiom"/>

</field>
<field type="text" variable="UserPwdTextInput">
<description align="left" txt="" id="description5.text"/>
<spec txt="Enter Schema/User name password for the
Database " id="text.label" size="15" set="okta007"/>

</field>
</panel>

</userInput>

ProcessPanel.Spec.xml:

<processing>
<job name="Executing the Needed Queries">
<os family="windows" />
<executefile name="$INSTALL_PATH\updates\launchsql.bat"/>

</job>
</processing>

Launchsql.bat:

echo "Execution of SQL Queries \n"
java -classpath $INSTALL_PATH\updates\msutil.jar;$INSTALL_PATH\update

137

s\msbase.jar;$INSTALL_PATH\updates\mssqlserver.jar;$INSTALL_PATH\updates\
ojdbc14.jar;$INSTALL_PATH\updates\
JDBCGeneral
$INSTALL_PATH\updates\
$ServerNameTextInput
$PortNbTextInput
$DBNameTextInput
$UserNameTextInput
$UserPwdTextInput
$SQLServerType

JDBCGeneral.java: (of course you need the compiled .class !!! but I’m
showing the source code)

/**
* Parses a .sql file and runs them depending on DB settings
* through jdbc.
*
* @author Fabrice Mirabile
* @version 2.0
/

import java.*;
import java.sql.*;
import java.io.*;
import java.util.*;
import java.io.File;

public class JDBCGeneral{
private java.sql.Connection con = null;
private final String selectMethod = "cursor";

// Constructor
public JDBCGeneral(){}

public static void main(String[] argv) throws Exception
{
String folderpath = "";

final String folderpathbase = argv[0];
final String serverName= argv[1];
final String portNumber = argv[2];

138

final String databaseName= argv[3];
final String userName = argv[4];
final String password = argv[5];
final String SQLServerType = argv[6];

if (SQLServerType.equals("SQLServer")) {
final String url = "jdbc:microsoft:sqlserver://";
folderpath = folderpathbase.concat("sqlsms");
String classforname =
"com.microsoft.jdbc.sqlserver.SQLServerDriver";
JDBCGeneral myDbTest = new JDBCGeneral();
//myDbTest.displayDbPropertiesMS(classforname,url,ser
verName,portNumber, databaseName, userName, password);
String[] files =
myDbTest.getfilenamesMS(classforname,url,folderpath, serverName,
portNumber, databaseName, userName, password);

}
else if (SQLServerType.equals("Oracle")) {
final String url = "jdbc:oracle:thin:@";
folderpath = folderpathbase.concat("sqlsoracle");
//test if there’s no need for SQL Execution,
//check if null value is returned from file selection
on selecte path
String classforname =
"oracle.jdbc.driver.OracleDriver";
JDBCGeneral myDbTest = new JDBCGeneral();
//myDbTest.displayDbPropertiesOracle(classforname,url,s
erverName,portNumber, databaseName, userName, password);
String[] files =
myDbTest.getfilenamesOracle(classforname,url,folderpath,
serverName, portNumber, databaseName, userName, password);
}

}

public void displayDbPropertiesOracle(String classforname,
String url,String serverName, String portNumber, String
databaseName, String userName, String password){

java.sql.DatabaseMetaData dm = null;
java.sql.ResultSet rs = null;
try{

con=
this.getConnectionOracle(classforname,url,serverName,
portNumber, databaseName, userName, password);

139

if(con!=null){
dm = con.getMetaData();
System.out.println("Driver
Information");
System.out.println("\tDriver
Name: "+ dm.getDriverName());
System.out.println("\tDriver
Version: "+ dm.getDriverVersion ());
System.out.println("\nDatabase Information ");
System.out.println("\tDatabase Name: "+
dm.getDatabaseProductName());
System.out.println("\tDatabase Version: "+
dm.getDatabaseProductVersion());
System.out.println("Avalilable Catalogs ");
rs = dm.getCatalogs();
while(rs.next()){
System.out.println("\tcatalog: "+

rs.getString(1));
}
rs.close();
rs = null;
closeConnection();

}else System.out.println("Error: No
active Connection");

}catch(Exception e){
e.printStackTrace();

}
dm=null;

}

public void displayDbPropertiesMS(String classforname,
String url,String serverName, String portNumber, String
databaseName, String userName, String password){

java.sql.DatabaseMetaData dm = null;
java.sql.ResultSet rs = null;
try{

con=
this.getConnectionMS(classforname,url,serverName,
portNumber, databaseName, userName, password);
if(con!=null){

dm = con.getMetaData();
System.out.println("Driver
Information");
System.out.println("\tDriver

140

Name: "+ dm.getDriverName());
System.out.println("\tDriver
Version: "+ dm.getDriverVersion ());
System.out.println("\nDatabase Information ");
System.out.println("\tDatabase Name: "+
dm.getDatabaseProductName());
System.out.println("\tDatabase Version: "+
dm.getDatabaseProductVersion());
System.out.println("Avalilable Catalogs ");
rs = dm.getCatalogs();
while(rs.next()){
System.out.println("\tcatalog: "+

rs.getString(1));
}
rs.close();
rs = null;
closeConnection();

}else System.out.println("Error: No
active Connection");

}catch(Exception e){
e.printStackTrace();

}
dm=null;

}

private java.sql.Connection getConnectionMS(String
classforname, String url,String serverName, String portNumber,
String databaseName, String userName, String password){

try{
Class.forName(classforname);
con = java.sql.DriverManager.getConnect
ion(getConnectionUrlMS(url,serverName, portNumber,
databaseName),userName,password);
if(con!=null)
System.out.println("Connection Successful!");

}catch(Exception e){
e.printStackTrace();
System.out.println("Error Trace in
getConnection() : " + e.getMessage());

}
return con;

}

private String getConnectionUrlMS(String url,String

141

serverName, String portNumber, String databaseName){
return url+serverName+":"+portNumber+";databaseNa
me="+databaseName+";selectMethod="+selectMethod+";";

}

private java.sql.Connection getConnectionOracle(String
classforname, String url,String serverName, String portNumber,
String databaseName, String userName, String password){

try{
Class.forName(classforname);
con = java.sql.DriverManager.getConnect
ion(getConnectionUrlOracle(url,serverName, portNumber,
databaseName),userName,password);
if(con!=null)
System.out.println("Oracle Connection Successful!");

}catch(Exception e){
e.printStackTrace();
System.out.println("Error Trace in
getConnectionOracle() : " + e.getMessage());

}
return con;

}

private String getConnectionUrlOracle(String url,String
serverName, String portNumber, String databaseName){

return
url+serverName+":"+portNumber+":"+databaseName;

}

private String[] getfilenamesOracle(String classforname,
String url, String folderpath, String serverName, String portNumber,
String databaseName, String userName, String password) throws
FileNotFoundException,IOException{

String newfolderpath = folderpath + "\\";
File toto = new File(newfolderpath);
String [] thelist = toto.list();
for (int j=0; j<thelist.length; ++j)
{

//System.out.println("file n?" + j
+ " = " + thelist[j] + "\n");
String[] StatementsSQL =
SQLFileInput(newfolderpath + thelist[j]);
RunSQLOracle(StatementsSQL,classforname,url,serverName,
portNumber, databaseName, userName, password);

142

}
return thelist;

}

private String[] getfilenamesMS(String classforname, String
url, String folderpath, String serverName, String portNumber, String
databaseName, String userName, String password) throws
FileNotFoundException,IOException{

String newfolderpath = folderpath + "\\";
File toto = new File(newfolderpath);
String [] thelist = toto.list();
for (int j=0; j<thelist.length; ++j)
{

//System.out.println("file n?" + j + " =
" + thelist[j] + "\n");
String[] StatementsSQL =
SQLFileInput(newfolderpath + thelist[j]);
RunSQLMS(StatementsSQL,classforname,url,serverName,
portNumber, databaseName, userName, password);

}
return thelist;

}

/*
public String[] addToArray(String[] array, String s)
{
String[] ans = new String[array.length+1];
System.arraycopy(array, 0, ans, 0, array.length);
ans[ans.length - 1] = s;
return ans;

}
*/

public String[] SQLFileInput(String sqlinput) throws
FileNotFoundException,IOException {

BufferedReader br = new BufferedReader(new
FileReader(sqlinput));
List lines = new ArrayList();
int i = 0;
int h = 0;
String thisLine;
String[] SQLStatements = new String[1000];

while ((thisLine = br.readLine()) != null)

143

{
//System.out.println(thisLine);
SQLStatements[h] = thisLine;
h++;

}

/*for(String line = br.readLine();line != null;line =
br.readLine()) {

// split by semi-colon
InsertRows = line.split(";");
i++;

}

for (int j=0; j<SQLStatements.length; ++j)
{

if (SQLStatements[j] != null)
System.out.println("query n?" + j + "
= " + SQLStatements[j]);

}*/

return SQLStatements;
}

public void RunSQLOracle(String[] StatementsSQL, String
classforname, String url, String serverName, String portNumber,
String databaseName, String userName, String password){

try {
con=
this.getConnectionOracle(classforname,url,serverName,
portNumber, databaseName, userName, password);
Statement stAddUser = con.createStatement();

for (int i=0; i<StatementsSQL.length; ++i)
{

if (StatementsSQL[i] != null)
{

System.out.print(StatementsSQL[i] + "...");
int rowsAffected =
stAddUser.executeUpdate(StatementsSQL[i]);
if (rowsAffected == 1)
System.out.println("OK");

}
}
closeConnection();

144

}
catch(SQLException e) {
e.printStackTrace();
System.out.println("\nError Trace in
RunSQLOracle(): " + e.getMessage());
}

}

public void RunSQLMS(String[] StatementsSQL, String
classforname, String url, String serverName, String portNumber,
String databaseName, String userName, String password){

try {
con= this.getConnectionMS(classforname,
url,serverName, portNumber, databaseName, userName,
password);
Statement stAddUser = con.createStatement();

for (int i=0; i<StatementsSQL.length; ++i)
{

if (StatementsSQL[i] != null)
{

System.out.print(StatementsSQL[i] + "...");
int rowsAffected =
stAddUser.executeUpdate(StatementsSQL[i]);
if (rowsAffected == 1)

System.out.println("OK");
}

}
closeConnection();

}
catch(SQLException e) {
e.printStackTrace();
System.out.println("\nError Trace in RunSQLMS():
" + e.getMessage());
}

}

private void closeConnection(){
try{

if(con!=null)
con.close();

con=null;
}catch(Exception e){

e.printStackTrace();

145

}
}

}

To sum up:
The install.xml copy the files, the userinput ask for the DB connections, the pro-

cess.xml launch the class which takes as arguments the following entries:

• a folder that will contain the sql files (each file is a sequence of sql queries
semi-colon separated). This folder contains subfolder for each type of DB

• the server name of the machine hosting the DB

• the port number of the connection (1433 for sql server and 1521 for oracle for
example)

• name of the DB

• username

• username password

• type of DB (oracle, sqlserver...) in order to execute the sql inside the corre-
sponding sub-folder

Once again, i hope you’ll find this useful and if anyone has a question, don’t hesitate to
contact me via http://developer.berlios.de/sendmessage.php?touser=12462 or post into
the user/devel list.

Done by Fabrice Mirabile on 20th of april 2005

Sample Install Definition

This shows an example of how to use many of the features and advanced features dis-
cussed in many of the other sections of this documentation. Look in the sample directory
for a more basic example and all the necessary files and instructions to build your first
IzPack installer.

Normally, a build process will call IzPack from Ant using something like the following:

<!-- Allows us to use the IzPack Ant task, standalone-compiler.jar added to Ant lib -->
<taskdef name="izpack" classpath="${install.lib}/standalone-compiler.jar"

classname="com.izforge.izpack.ant.IzPackTask"/>

<!-- Run installer build -->
<echo message="Running IzPack to build the installer..."/>
<izpack input="install-definition.xml"

output="${output.dir}/${product.short.name}-${product.version}-install.jar"
installerType="standard"
inheritAll="true"

146

basedir="${temp.dir}"
compression="deflate"
compressionlevel="9"/>

<!-- Clean working directory -->
<echo message="Cleaning up working directory..."/>
<delete dir="${temp.dir}" quiet="true" includeemptydirs="true"/>
<echo message="Done."/>

install-definition.xml

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>

<installation version="1.0">
<!-- Ant properties in this file can be referenced with @{},

otherwise use variables below in installer files with ${} -->
<info>
<appname>@{product.name}</appname>
<appversion>@{product.version}</appversion>
<uninstaller name="remove.task" write="yes"/>

</info>

<guiprefs width="600" height="480" resizable="no">
<laf name="kunststoff">
<os family="unix" />

</laf>
<modifier key="useHeadingPanel" value="yes"/>
<modifier key="useHeadingForSummary" value="yes"/>

<modifier key="headingImageOnLeft" value="yes"/>
<modifier key="headingLineCount" value="2"/>
<modifier key="headingFontSize" value="1.5"/>
<modifier key="headingBackgroundColor" value="0x00ffffff"/>
<modifier key="headingPanelCounter" value="text"/>
<modifier key="headingPanelCounterPos" value="inHeading"/>

</guiprefs>

<locale>
<langpack iso3="eng"/>

</locale>

<!-- Need to define ant properties we want to use during install as variables -->
<variables>
<variable name="app.name" value="@{app.name}"/>
<variable name="UserPathPanelVariable" value="@{default.dest.dir.sql}"/>
<variable name="UserPathPanelDependsName" value="Install Database Server"/>

147

<variable name="jboss.version" value="@{jboss.version}"/>
<variable name="install.jboss.service" value="true"/>

</variables>

<resources>
<res id="box-out-32.png" src="@{install.res}/box-out-32.png"/>
<res id="customicons.xml" src="@{install.res}/custom.icons.xml"/>
<res id="CustomLangpack.xml_eng" src="@{install.res}/custom.eng.xml"/>
<res id="HTMLInfoPanel.info" src="@{install.res}/license-notice.html"/>
<res id="Heading.image" src="@{install.res}/heading-image.png"/>
<res id="Installer.image" src="@{install.res}/side-image.png" />
<res id="ProcessPanel.Spec.xml" src="@{build.dir}/processing-tasks.xml"/>
<res id="userInputSpec.xml" src="@{build.dir}/userInputSpec.xml" />
<res id="uninstaller.warning" src="@{install.res}/uninstall-warn.txt"/>
<!-- default-dir.txt is written by the calling build.xml -->
<res id="TargetPanel.dir" src="@{install.res}/default-dir.txt"/>

</resources>

<panels>
<panel classname="HelloPanel"/>
<panel classname="HTMLInfoPanel"/>
<panel classname="TargetPanel"/>
<panel classname="InstallationGroupPanel"/>
<panel classname="PacksPanel"/>
<panel classname="UserInputPanel" id="UserInputPanel.0"/>
<panel classname="UserInputPanel" id="UserInputPanel.1"/>
<panel classname="UserInputPanel" id="UserInputPanel.2"/>
<panel classname="UserPathPanel"/>
<panel classname="SummaryPanel"/>
<panel classname="InstallPanel"/>
<panel classname="ProcessPanel"/>
<panel classname="SimpleFinishPanel"/>

</panels>

<listeners>
<listener installer="SummaryLoggerInstallerListener">

<os family="windows"/>
</listener>

</listeners>

<packs>
<pack name="Main Application" required="yes" installGroups="New Application" >
<description>The first application deployed in a new JBoss application server.</description>
<file src="@{jboss.version}" targetdir="$INSTALL_PATH"/>

148

</pack>
<pack name="Install Database Server" required="no" preselected="yes" os="windows" installGroups="New Application">
<description>New server installation of the selected database as required by the application.</description>
<file src="postgresql" targetdir="$INSTALL_PATH"/>
<file src="sql" targetdir="$INSTALL_PATH"/>
<executable
targetfile="$INSTALL_PATH/postgresql/postgres_install_windows.bat"
stage="postinstall"
keep="true"

>
<args>
<arg value="${UserPathPanelVariable}"/>
<arg value="$HOST_NAME"/>
<arg value="${db.service.name}"/>
<arg value="${db.service.password}"/>
<arg value="${db.su.password}"/>

</args>
</executable>

</pack>
<pack name="JBoss Source Code" required="no" preselected="no" installGroups="New Application">
<description>The JBoss application server source is available as required by the LGPL.</description>
<file src="src" targetdir="$INSTALL_PATH/@{jboss.version}" />

</pack>
<pack name="Update Application" required="yes" installGroups="Update Existing Application">
<description>The required application files to update an existing installation.</description>
<file src="update" targetdir="$INSTALL_PATH"/>

</pack>
<pack name="Post-Install Tasks" required="yes">
<description>Configuration and cleanup required for the installation.</description>
<file src="ant" targetdir="$INSTALL_PATH"/>
<file src="post-install-tasks.bat" targetdir="$INSTALL_PATH"/>
<file src="build.xml" targetdir="$INSTALL_PATH"/>
<file src="Uninstall_PostgreSQL_and_Application.bat" targetdir="$INSTALL_PATH"/>
<file src="Uninstall_Application_Only.bat" targetdir="$INSTALL_PATH"/>
<parsable targetfile="$INSTALL_PATH/post-install-tasks.bat"/>
<parsable targetfile="$INSTALL_PATH/build.xml"/>
<parsable targetfile="$INSTALL_PATH/@{jboss.version}/bin/system.properties"/>
<parsable targetfile="$INSTALL_PATH/Uninstall_PostgreSQL_and_Application.bat"/>
<parsable targetfile="$INSTALL_PATH/Uninstall_Application_Only.bat"/>

</pack>
</packs>

<!-- The native libraries to add. This is required for creating shortcuts on Windows -->
<native type="izpack" name="ShellLink.dll"/>

149

</installation>

Sample userInputSpec.xml

Here’s an example 3 panel userInputSpec.xml file. You specify the use of this XML
document inside your install definition in the resource section like this (assuming your
ant build.xml uses a property called build.dir):

<resources>
<res id="userInputSpec.xml" src="@{build.dir}/userInputSpec.xml" />

</resources>

userInputSpec.xml

<userInput>
<!-- Install -->
<panel order="0">

<createForPack name="Main Application" />
<field type="title" txt="Import Keystores" bold="true" size="1" />
<field type="divider" align="top"/>
<!-- Keystore -->
<field type="staticText" align="left" txt="Existing SSL keystore to import:"/>
<field type="file" align="left" variable="existing.ssl.keystore">
<spec txt="" size="25" set=""/>

</field>
<field type="space"/>
<!-- Truststore -->
<field type="staticText" align="left" txt="Existing SSL truststore to import:"/>
<field type="file" align="left" variable="existing.ssl.truststore">
<spec txt="" size="25" set=""/>

</field>
<field type="space"/>
<!-- Signing Keystore -->
<field type="staticText" align="left" txt="Existing signing keystore to import:"/>
<field type="file" align="left" variable="existing.signing.keystore">
<spec txt="" size="25" set=""/>

</field>
<field type="space"/>
<field type="divider" align="bottom"/>

</panel>
<panel order="1">
<!-- Validate access to keystores with information from last panel -->
<createForPack name="Main Application" />

150

<field type="title" txt="SSL Keystore Settings" bold="true" size="1" />
<field type="divider" align="bottom"/>
<!-- Skip validation in case customer has something wrong they want to fix later -->
<field type="check" align="left" variable="skip.keystore.validation">
<spec txt=" Skip keystore password validation (not recommended)" size="25" true="true" false="false" set="false"/>

</field>
<field type="divider" align="top"/>
<!-- Keystore -->
<field type="combo" variable="existing.ssl.keystore.type">
<spec txt="Keystore type:" id="existing.ssl.keystore.type">
<choice txt="JKS" value="JKS" set="true"/>
<!--
<choice txt="PKCS12" value="PKCS12"/>
-->

</spec>
</field>
<field type="space"/>
<field type="text" align="left" variable="keystore.key.alias">

<spec txt="Keystore Key Alias:" size="25" set="alias-1"/>
</field>
<field type="password" align="left" variable="keystore.password">
<spec>
<pwd txt="Keystore Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator" txt="Both keystore passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator" txt="Could not validate keystore with password and alias provided." id="key for the error text">
<param name="keystoreFile" value="${existing.ssl.keystore}"/>
<param name="keystoreType" value="${existing.ssl.keystore.type}"/>
<param name="keystoreAlias" value="${keystore.key.alias}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

</validator>
</field>
<field type="space"/>
<!-- Truststore -->
<field type="combo" variable="existing.ssl.truststore.type">
<spec txt="Truststore type:" id="existing.ssl.truststore.type">
<choice txt="JKS" value="JKS" set="true"/>
<!--
<choice txt="PKCS12" value="PKCS12"/>
-->

</spec>
</field>
<field type="space"/>

151

<field type="password" align="left" variable="truststore.password">
<spec>
<pwd txt="Truststore Password:" size="25" set=""/>
<pwd txt="Retype Password:" size="25" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator" txt="Both truststore passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator" txt="Could not validate keystore with password and alias provided." id="key for the error text">
<param name="keystoreFile" value="${existing.ssl.truststore}"/>
<param name="keystoreType" value="${existing.ssl.truststore.type}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

</validator>
</field>
<field type="divider" align="bottom"/>

</panel>
<panel order="2">
<!-- Validate access to signing keystore with information from last panel -->
<createForPack name="Main Application" />
<field type="title" txt="Signing Keystore Settings" bold="true" size="1" />
<field type="divider" align="bottom"/>
<!-- Skip validation in case customer has something wrong they want to fix later -->
<field type="check" align="left" variable="skip.keystore.validation">
<spec txt=" Skip keystore password validation (not recommended)" size="20" true="true" false="false" set="false"/>

</field>
<field type="divider" align="top"/>
<!-- Keystore -->
<field type="combo" variable="existing.signing.keystore.type">
<spec txt="Keystore type:" id="existing.signing.keystore.type">
<choice txt="JKS" value="JKS" set="true"/>
<!--
<choice txt="PKCS12" value="PKCS12"/>
-->

</spec>
</field>
<field type="space"/>
<field type="password" align="left" variable="signing.keystore.password">
<spec>
<pwd txt="Keystore Password:" size="20" set=""/>
<pwd txt="Retype Password:" size="20" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator" txt="Both signing keystore passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator" txt="Could not access keystore with password provided." id="key for the error text">
<param name="keystoreFile" value="${existing.signing.keystore}"/>
<param name="keystoreType" value="${existing.signing.keystore.type}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

152

</validator>
</field>
<field type="space"/>
<!-- Signing Key 1 -->
<field type="text" align="left" variable="first.signing.keystore.key.alias">

<spec txt="First Signing Alias:" size="20" set="alias-1"/>
</field>
<field type="password" align="left" variable="first.signing.password">
<spec>
<pwd txt="First Signing Password:" size="20" set=""/>
<pwd txt="Retype Password:" size="20" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator" txt="Both first signing key passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator" txt="Could not validate keystore with password and first signing alias provided." id="key for the error text">
<param name="keystoreFile" value="${existing.signing.keystore}"/>
<param name="keystoreType" value="${existing.signing.keystore.type}"/>
<param name="keystorePassword" value="${signing.keystore.password}"/>
<param name="keystoreAlias" value="${first.signing.keystore.key.alias}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

</validator>
</field>
<field type="space"/>
<!-- Signing Key 2 -->
<field type="text" align="left" variable="second.signing.keystore.key.alias">

<spec txt="Second Signing Alias:" size="20" set="crate-cmd-alias"/>
</field>
<field type="password" align="left" variable="second.signing.password">
<spec>
<pwd txt="Second Signing Password:" size="20" set=""/>
<pwd txt="Retype Password:" size="20" set=""/>

</spec>
<validator class="com.izforge.izpack.util.PasswordEqualityValidator" txt="Both second signing key passwords must match." id="key for the error text"/>
<validator class="com.izforge.izpack.util.PasswordKeystoreValidator" txt="Could not validate keystore with password and second signing alias provided." id="key for the error text">
<param name="keystoreFile" value="${existing.signing.keystore}"/>
<param name="keystoreType" value="${existing.signing.keystore.type}"/>
<param name="keystorePassword" value="${signing.keystore.password}"/>
<param name="keystoreAlias" value="${second.signing.keystore.key.alias}"/>
<param name="skipValidation" value="${skip.keystore.validation}"/>

</validator>
</field>
<field type="divider" align="bottom"/>

</panel>
</userInput>

153

	Foreword
	Introduction
	Welcome to IzPack !
	The Features
	The Development
	3rd party code used in IzPack

	Getting started
	Overview
	Installation of IzPack
	On Windows
	On UNIX/Linux

	First Compilation
	How to develop and debug IzPack using Eclipse
	The IzPack architecture
	The compilation system
	How an installer works
	The different kinds of installers
	Installers for older vm versions

	Writing Installation XML Files
	What You Need
	Your editor
	Writing XML

	Variable Substitution
	The Built-In Variables
	Environment Variables
	Dynamic Variables
	Parse Types
	The IzPack Elements
	The Root Element <installation>
	The Information Element <info>
	The Packaging Element <packaging>
	The Variables Element <variables>
	The dynamic Variables Element <dynamicvariables>
	The Conditions Element <conditions>
	The Installer Requirements Element <installerrequirements>
	The GUI Preferences Element <guiprefs>
	The Localization Element <locale>
	The Resources Element <resources>
	The Panels Element <panels>
	The Packs Element <packs>
	Internationalization of the PacksPanel
	<description> - pack description
	<depends> - pack dependencies
	<os> - OS restrictions
	<updatecheck>
	<file> - add files or directories
	<additionaldata>
	<singlefile> - add a single file
	<fileset>: add a fileset
	<parsable> - parse a file after installation
	<executable> - mark file executable or execute it
	<os> - make a file OS-dependent
	The Native Element <native>
	<os> - make a library OS-dependent
	The Jar Merging Element <jar>

	XInclude-style constructs
	The xfallback element
	The xfragment element

	The Available Panels
	HelloPanel
	CheckedHelloPanel
	InfoPanel and HTMLInfoPanel
	LicencePanel and HTMLLicencePanel
	PacksPanel
	ImgPacksPanel
	TreePacksPanel
	TargetPanel
	DefaultTargetPanel
	InstallPanel
	XInfoPanel
	FinishPanel
	SimpleFinishPanel
	ShortcutPanel
	UserInputPanel
	CompilePanel
	ProcessPanel
	<executeclass> - Execute Java Classes
	<executeForPack> - Only execute the job for certain packs
	<logfiledir> - Output of the processPanel saved to a log

	JDKPathPanel
	SelectPrinterPanel
	DataCheckPanel
	SummaryPanel
	InstallationGroupPanel
	UserPathPanel

	Advanced features
	Apache Ant integration
	Embedding the installation file using a config element
	System properties as variables
	Automated Installers
	Picture on the Language Selection Dialog
	Picture in the installer
	Modifying the GUI
	Modifying Language Selection Dialog
	Modifying IzPack Panels
	Using a Separated Heading Panel
	Alternative Cancel Dialog

	Logging the Installation
	Web Installers
	More Internationalization
	Special resources
	Packs

	Desktop Shortcuts
	Defining Shortcuts
	Introduction
	What to Add to the Installer

	Why Native Code to do the Job on Windows?
	The Shortcut Specification
	Shortcut Attributes
	Unix specific shortcut attributes
	Selective Creation of Shortcuts
	Localizing shortcuts
	DesktopShortcutCheckboxEnabled Builtin Variable
	Summary
	Shortcut Tips
	The Desktop
	Icons
	Targets

	Command Line
	Trouble Shooting
	Problems You Can Solve
	Problems That Have No Solution (yet)

	A sample shortcut specification file for Unix

	Creating Your Own Panels
	How to get started
	Next Steps
	Access to the Variable Substitution System
	Controlling Flow
	Reading XML
	Supporting Classes
	Panels that are not visible
	A word about building IzPack
	The IzPanel Class
	The Internationalization of custom panels

	User Input
	The Basic XML Structure
	Concepts and XML Elements Common to All Fields
	Internationalization
	Panel Title
	Static Text
	Visual Separation
	Text Input
	Radio Buttons
	Combo Box
	Check Box
	Password Field
	File Field
	Directory Field
	Rule Input
	Layout and Input Rules
	Setting Field Content
	The Output Format
	Validating Field Content
	NotEmptyValidator
	RegularExpressionValidator
	PasswordEqualityValidator
	PasswordKeystoreValidator
	Creation Your Own Custom Validator

	Processing the Field Content
	Summary Example
	Search
	Specification
	Example

	Custom Actions
	Overview
	How It Works
	Custom Action Types
	Custom Actions At Packaging
	Custom Actions At Installing Time
	Custom Actions At Uninstalling Time

	Package Path
	Native Libraries for Uninstallation
	What You Have To Do
	Custom Actions at Packaging (CompilerListener)
	Custom Actions at Installation Time (InstallerListener)
	Custom Actions at Uninstallation Time (UninstallerListener)
	Example
	Ant Actions (InstallerListener and UninstallerListener)
	The Basic XML Struture
	<property>: define a property
	<propertyfile>: define properties in a file
	<target>: target to call at installation
	<uninstall_target>: target to call on uninstallation

	Registry access (InstallerListener and UninstallerListener)
	The Basic XML Struture
	<key>: define a key
	<value>: define a value

	Extended Uninstall Key
	Uninstall Behavior
	Examples
	Summary Logger (InstallerListener)

	IzPack utilities
	Windows executable wrapper (izpack2exe)
	Description
	Requirements
	Usage

	Mac OS X Application bundle wrapper (izpack2app)
	Description
	Requirements
	Usage

	Apache License, Version 2.0
	Overview
	License

	Documentation license
	CookBooks
	1. How To create an ODBC connection with IzPack (by Fabrice Mirabile)
	a. Problem
	b. Solution
	c. Discussion

	2. Work around for pack and process dependence And Execution of Java Classes that runs SQL/PLSQL
	a. Problem
	b. Solution
	c .Discussion

	Sample Install Definition
	Sample userInputSpec.xml

