

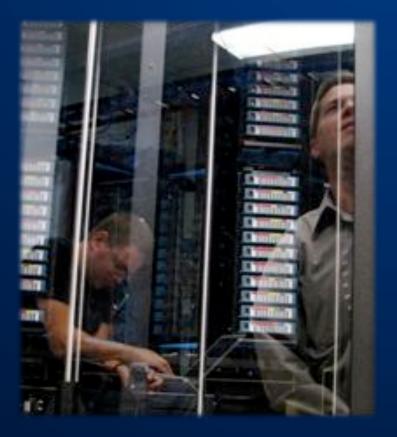
Science-Centric Storage

Chris Dagdigian 2010 Bio-IT World Expo Europe Hannover, Germany

Word of warning

- Known for speaking quickly and having a large slide deck
 - 60 slides in 30 minutes is pretty normal for me, sorry!
- Also an unrepentant PowerPoint fiddler
 - Final version will be posted on <u>http://blog.bioteam.net</u>

BioTeam Inc.


Independent Consulting Shop: Vendor/technology agnostic

Staffed by:

 Scientists forced to learn High Performance IT to conduct research

Our specialty:

Bridging the gap between Science & IT

Science Driven Storage

First the good news

Late 2010 – The Good News

- Far less scary today than it was in 2004-2006
- Petascale storage is no longer a risky technological gamble
 - And hasn't been for years
- Now it's just an IT design & budget exercise
 - Proven solutions available from multiple vendors
 - Existing petascale customers are speaking about and sharing their experiences
 - Choices for nearline & tiered storage increasing every day

Late 2010 – The Good News

- Instrument-driven NGS "data deluge" becoming far more manageable (and eventually going away)
- Why?
 - Data triage is an accepted common practice
 - 1st talk today (Sanger): "BAM files only"
 - No images, no srf, no fastq
 - Current generation instruments doing more internal processing & data reduction
 - Next generation instruments moving entirely away from image-based sensor platforms
 - Especially true for 4th-gen sequencing platforms

Now for the bad news

chris@bioteam.net 8

Late 2010 – The Bad News

- NGS instruments are not the only "terabyte scale" tools showing up in wet labs
 - Many analytic tools coming out in HT form
 - Many imaging platforms switching going 2D to 3D/4D
 - Confocal microscopy, ultrasound, etc.
 - Cheaper lab instruments often mean that more are purchased
- End result still seems to be a need for large scale storage in discovery research environments

Late 2010 - More bad news

Managing User Expectations Still Difficult

- End users still have no idea about true costs of keeping data accessible & available during it's lifecycle
 - "I can get a terabyte from Costco for \$220!"
 - "I can get a terabyte from Costco for \$160!" (Oct 08)
 - "I can get a terabyte from Costco for \$124!" (April 09)
 - "I can get a terabyte from NewEgg for \$84!" (Feb 10)
 - 2TB SATA for \$109, 1TB SATA for \$69 (Oct 10)
- IT needs to be involved in setting expectations and educating on true cost of keeping data online & accessible
 - Everyone benefits when this happens

Late 2010 – The Bad News

Most worrisome trend:

- As NGS instrument data rate declines, rate at which researchers are consuming downstream storage is increasing
 - First heard this 1.5 years ago, now confirmed at multiple sites

Why is this worrisome?

- Storage requirements of researchers are far less predictable than instruments
- Data mashups & widespread collaboration breeding tremendous data duplication

Infrastructure Tour

What does this stuff look like in the real world?

Infrastructure Tour

- Research protocols are changing faster than the underlying IT infrastructures that support them
- Vendors, products & strategies will differ depending on size, scope & services
- Are you:
 - Individual lab or PI?
 - Workgroup or department?
 - Small core facility?
 - Large core facility?
 - Other

Example: Point solution for NGS

Self-contained lab-local cluster & storage for Illumina

Example: Point solution for NGS

Datacenter-resident infrastructure for 1-2 NGS systems

Example: Shared IT for Midsized Core

Example: Large Genome Center

Example: Large Core Facility

Example: Data Transfer Station

More & more human-driven large scale data movement is being seen out in the field, for various reasons. It must be planned for.

Example: Data Transfer Station

External e-SATA 'toasters' & portable RAID units

Example: Data Transfer Station

Data transfer station using hot-swap SATA disk bays

Example: 'naked' data transfer

eSATA / USB 2.0 "toaster"

Example: 'naked' data archive @ scale

Far cheaper than a true offline archive/tape solution. Not unreasonable in many use cases, especially for non-unique data...

Example: 'naked' data archive @ scale

... prettier picture

And we are all trying to avoid this

BIOTEAM Enabling Science The Stakes ...

180+ TB stored on lab bench. Primary data. No RAID, no backup.

Science Driven Storage

Sizing, selecting & purchasing

Data Awareness

- First principals:
 - 1. Understand science changes faster than IT
 - 2. Understand the data you will produce
 - 3. Understand the data you will keep
 - 4. Understand how the data will move
- Second principals:
 - 1. One instrument or many?
 - 2. One vendor or many?
 - 3. One lab/core or many?

Data You Produce

- Important to understand data sizes and types on an instrument-by-instrument basis
 - How many instrument runs per day/week?
 - What IT resources required for each basecall made?
- Will have a significant effect on storage performance, efficiency & utilization
- Where it matters:
 - Big files or small files?
 - Hundreds, thousands or millions of files?
 - Does it compress well?
 - Does it deduplicate well?

Data You Keep

- Terabyte scale instruments are the new norm
- No longer possible to give "unlimited" storage to researchers
- Data triage has not been controversial for years
 - Giant facilities: BAM files only, toss everything else
 - Mainstream: toss images, keep some intermediate data
- Key Questions
 - What do you keep? What do you throw away?
 - Online, nearline or offline?
 - What does "forever" mean?
 - What crazy things are your researchers going to do with all that data?

Data You Move

Facts

- Data captured does not stay with the instrument
- Often moving to multiple locations
- Terabyte volumes of data could be involved
- Multi-terabyte data transit across networks is rarely trivial no matter how advanced the IT organization
- Campus network upgrade efforts may or may not extend all the way to the benchtop
- Carrying/shipping physical media can be a solution
- New in 2010:
 - Terabyte volumes of data arriving from outsourced providers

Flops, Failures & Freakouts

Learning from past mistakes.

#1 - Unchecked Enterprise Architects

- Scientist: "My work is priceless, I must be able to access it at all times"
- Storage Guru: "Hmmm...you want high availibility, huh?"
- System delivered:
 - 40TB Enterprise SAN
 - Asynchronous replication to remote site
 - Can't scale, can't do NFS easily
 - \$~500K/year in maintenance costs

#2 - Unchecked User Requirements

 Scientist: "I do bioinformatics, I am rate limited by the speed of file IO operations. Faster disk means faster science."

System delivered:

Budget blown on top tier 'Cadillac' system
Fast everything

Outcome:

System fills to capacity in 9 months

#3 - D.I.Y Cluster/Parallel File systems

- Common source of storage unhappiness
- Root cause:
 - Not enough pre-sales time spent on design and engineering
- System as built:
 - Not enough metadata controllers
 - Poor configuration of key components
- End result:
 - Poor performance or availability

Lessons Learned

- End-users are not precise with storage terms
 - "Extremely reliable" means no data loss, not millions spent on 99.999% high availability
- When true costs are explained:
 - Many research users will trade a small amount of uptime or availability for more capacity or capabilities
 - ... will also often trade some level of performance in exchange for a huge win in capacity or capability

Lessons Learned

- End-users demand the world but are willing to compromise
 - Necessary to *really* talk to them and understand work, needs and priorities
 - Also necessary to explain true costs involved
- People demanding the "fastest" storage often don't have actual metrics to present

Lessons Learned

- Software-based parallel or clustered file systems are non-trivial to correctly implement
- Essential to involve experts in the initial design phase
 - Even if using 'open source' version ...
- Commercial support is essential
 - And I say this as an open source zealot ...

Informatics Storage Requirements

What features do we actually need?

"Must Have"

- High capacity & scaling headroom
- Variable file types & access patterns
- Multi-protocol access options
- Concurrent read/write access
- Don't forget "lessons learned" ...

"Nice to have"

- Single-namespace scaling
 - No more "/data1", "/data2" buckets …
 - Horrible cross mounts, bad efficiency
- Low Operational Burden
- Appropriate Pricing*
- "A la cart" feature and upgrade options

Capacity

- Our science is expanding faster than our IT infrastructure
 - Flexibility is essential to deal with this
- If we don't address capacity needs:
 - Expect to see commodity NAS boxes crammed into lab benches and telco closets
 - Expect hassles induced by island of data
 - Backup issues (if they get backed up at all)
 - ... and lots of USB drives on office shelves ...

Remember The Stakes

Motivated researchers will solve their own problems with or without help from IT ...

File Types & Access Patterns

 Many storage products are optimized for particular use cases and file types

Problem

- Life Science & NGS can require them all:
 - Many small files vs. fewer large files
 - Text vs. Binary data
 - Sequential access vs. random access
 - Concurrent reads against large files

Multi-Protocol Is Essential

- The *overwhelming* researcher requirement is for *shared* access to *common* filesystems
 - Especially true for next-gen sequencing
 - Lab instrument, cluster nodes & desktop workstations all need access the same data
 - This enables automation and frees up human time
- Shared storage in a SAN world is non-trivial
- Storage Area Networks (SANs) are not the best storage platform for discovery research environments

Storage Protocol Requirements

NFS

- Standard method for file sharing between Unix hosts
- CIFS/SMB
 - Desktop access
 - Ideally with authentication and ACLs coming from Active Directory or LDAP
- FTP/HTTP
 - Sharing data among collaborators

Concurrent Storage Access

- Ideally we want read/write access to files from
 - Lab instruments & instrument control workstations
 - HPC / Cluster systems
 - Researcher desktops
- If we don't have this
 - Lots of time & core network bandwidth consumed by data movement
 - Large & possibly redundant data across multiple islands
 - Duplicated data over islands of storage
 - Harder to secure, harder to back up (if at all ...)
 - Large NAS arrays start showing up under desks and in nearby telco closets

Data Drift: Real Example

Non-scalable storage islands add complexity

Example:

- 1. Volume "Caspian" hosted on server "Odin"
- 2. "Odin" replaced by "Thor"
- 3. "Caspian" migrated to "Asgard"
- 4. Relocated to "/massive/"
- Resulted in file paths that look like this: /massive/Asgard/Caspian/blastdb /massive/Asgard/old_stuff/Caspian/blastdb /massive/Asgard/can-be-deleted/do-not-delete...

Nerdvana

1 petabyte available in single folder:

		- Carr	motal	-kafe	- 84x22	
Inthinitiation B. 20 -00 Princestant over reservents reservent	121222222	SARESSAL	**************************************		Recentle to the second	

Things To Think About

An attempt at some practical advice

Storage Landscape

- Storage is a commodity in 2010
- Cheap storage is easy
- Big storage getting easier every day
- Big, cheap & SAFE is much harder ...
- Traditional backup methods may no longer apply
 - Or even be possible ...

Storage Landscape

Still see extreme price ranges
 Raw cost of 1,000 Terabytes (1PB):
 \$125,000 to \$4,000,000 USD

Poor product choices exist in all price ranges

Poor Choice Examples

- On the low end:
 - Use of RAID5 (unacceptable for years now)
 - Too many hardware shortcuts result in unacceptable reliability trade-offs

Poor Choice Examples

- And with high end products:
 - Feature bias towards corporate computing, not research computing - pay for many things you won't be using
 - Unacceptable hidden limitations (size or speed)
 - 2009 example:
 - \$800,000 70TB (raw) Enterprise NAS Product
 - ... can't create a NFS volume larger than 10TB
 - ... can't dedupe volumes larger than 3-4 TB

And Finally ...

Can't have an IT talk without the "C-word"

Few Slides on Cloud Storage

- I drank the kool-aide
- I think cloud storage is the future
- Economics alone make this inescapable

Cloud Storage Inevitable

I don't care where you work

- You will never come close to the at-scale operational efficiencies seen by Amazon, Google & Microsoft
- Sheer obscene scale allows sale of wellengineered services cheaper than we can deploy ourselves
 - With healthy profit margins too

Amazon Example

- Amazon S3
 - Most expensive tier is \$0.15 per GB/month
 - Design goal: 99.99999999% durability
 - Automatic replication, designed to survive simultaneous loss of two datacenters
- Amazon "Reduced Redundancy" S3
 - "Only" 99.99% durability at ~30% less cost
 - Still get replication
 - Designed to survive loss of one datacenter

Amazon Example ...

- If we are truly honest about the actual fully-loaded cost of keeping our storage online, safe & accessible than cloud storage economics start to become compelling
- The only thing holding many of us back is the speed of our internet connections
 - Amazon physical media ingest/export can solve this for some use cases

My thoughts ...

- Cloud storage is a good fit for archive and several other use cases
- Great way to share data among collaborators or between service provider & client
- Low-volume lab instruments will soon routinely "write directly into the cloud"

My thoughts ...

- Expect to see this in 2011:
 - Storage vendors building cloud storage support into native controllers & arrays
 - It's just a REST or SOAP API call away ...
 - Likely as an inexpensive archive or backup option to primary & nearline stuff running locally
 - Or as front-end cache to primary data residing in the cloud

End;

- Thanks!
- Comments/feedback welcome:
 - chris@bioteam.net

