

Cloud Sensibility

Hype aside, what can "the cloud" do for life sciences today?

Chris Dagdigian
2010 Bio-IT-World Cloud Workshop

Cloud Sensibility

Hype aside, what can "the cloud" do for life sciences today?

Chris Dagdigian
2010 Bio-IT-World Cloud Workshop

Who I am

- Part of the BioTeam
 - ▶ Bioinformatics → HPC & Research IT nerd
- Our business:
 - Bridging the gap between science & high performance IT
- Warning:
 - I'm known to speak fast & carry a large slide deck!
 - Slides will be available online

Why I'm here

- Doing "science" on the cloud since 2007
- Heavy laaS user
 - Amazon AWS
- Can speak from multiple viewpoints:
 - Cloud User/ consumer
 - Vendor/integrator

Defining our terms

Gartner:

"Cloud computing is a style of computing where scalable and elastic IT-enabled capabilities are delivered as a service to external customers using Internet technologies."

Jinesh Varia on AWS:

• "... Amazon Web Services (AWS) cloud provides a highly reliable and scalable infrastructure for deploying web-scale solutions, with minimal support and administration costs, and more flexibility than you've come to expect from your own infrastructure, either on-premise or at a datacenter facility."

How we got here

- Enterprise applications have been trending away from tightly-coupled desktop or client-server apps
- Moving towards loosely-coupled web services and Service Oriented Architectures ("SOA")
- And ...
 - High-profile Software-as-a-Service ("Saas") success stories in the market are well known
 - Hypervisor-based virtualization now extremely common in enterprise & clearly providing benefit

Even in the most conservative shops

- Virtualization no longer seen as risky or scary
- Hypervisor methods delivering clear benefit
- Google Apps, etc. showing that SaaS is more than hype
- Thus ...
 - Significant curiosity in efforts that virtualize and commoditize infrastructure
 - More than just server virtualization
 - More than just a development platform
 - "Infrastructure-as-a-Service" (laaS) is born

The Big Picture

Is it real? What does it look like?

Cloud Computing: Real or Hype?

- Yep. It's the real deal
 - It exists and it is usable/useful today
 - ▶ BioTeam started using it for real work in 2007
 - Needs to be on your radar
- I say this as:
 - A cynical industry type who has to deliver results efficiently & on a budget
 - Finely tuned BS detector
 - Adverse to empty hype & cynical marketing
 - Someone who sees the same marketers that co-opted and destroyed the term "grid computing" now looking greedily at the "C" word

What does it look like?

- We have acronyms!
- Three main cloud segments:
 - SaaS
 - "Software as a Service"
 - PaaS
 - "Platform as a Service"
 - ▶ laaS
 - "Infrastructure as a Service"

Where is the worst hype?

- "Private Clouds"
 - ▶ Still mostly crap in 2010
 - ▶ 95% marketing, 5% usefulness
- I see two types of "private cloud"
 - Marketers sticking the c-word onto the same boring VMware/
 Xen methods that people have been using for years
 - 2. Vendors trying to convince you to rebuild your datacenter from scratch

Software As A Service

- Oldest & most mature model
- Software delivered to you over the net
- Typically on a subscription or pay-per-use model
- Think:
 - Google App Suite
 - ▶ 37Signals.com
 - FogBugz.com

Platform As A Service

- SaaS on steroids
 - Typically a hosted platform or environment that lets you manage the full lifecycle of application development, testing, deployment & management
 - You have much more responsibility & control than in a typical SaaS environment
- Think:
 - salesforce.com
 - Microsoft Azure
 - Google App Engine
 - CycleComputing

Infrastructure As A Service

- On-demand, outsourced datacenter
- Basic IT "foundational" building blocks for running, scaling, expanding or creating new applications
 - Pay-per-use model for:
 - Compute power & virtual servers
 - Storage & databases
 - Networks & bandwidth
- Think:
 - Amazon Web Services

Where the action is

- Platform As A Service (PaaS) is likely to have a large impact in our field
 - Think about:
 - Sample tracking & LIMS systems
 - Protocol/experiment management
 - Outsourced sequencing etc.
- many of these seem natural candidates for a cloud-resident platform service

Where the action is, cont.

- laaS is hot right now
 - Delivering real value& new capabilitiestoday
- Why?
 - Low entry cost
 - Easy learning curve
 - Instant feedback
 - Instant benefits

What to concentrate on

- Scientists & research IT staff should be looking most seriously at laaS opportunities
- Why?
 - Simply put, it's the cloud method that offers the most avenues for scientific, business or financial gain.
 - Rapid return on investment if done right
 - Easy learning curve, few complex barriers to entry

Infrastructure as a Service

"Your new scriptable datacenter ..."

Why are we having this discussion?

- In 2010
 - Chemistry, lab instruments & research protocols are changing faster than the underlying IT infrastructure
 - The old problem
 - [2004-today] Can't scale storage & CPU resources fast enough
 - The new problem
 - [2010-beyond] Scale-out just one of many problems; existing IT can't react fast enough to changes occurring in the labs
 - Finally being honest about true costs for operating & maintaining research IT facilities

"Scriptable Infrastructure"

- laaS can mitigate some these problems:
 - Scale-out & supporting peak demand
 - Massive "internet-scale" applications are what laaS folks designed their platforms to support
 - Flexibility & Agility
 - Virtualized and programmatically controllable IT building blocks (servers, storage, networks) generally far more flexible than anything you are doing in-house
 - Must faster to provision/deploy in many cases as well
 - Pay-as-you-go model reduces sunk costs

What makes laaS work

- Simple economics of scale.
 - laaS providers operate globe-spanning infrastructures of incredible size, scale & scope
 - Extreme scale allows for levels of efficiency, automation and optimization that none of us can match in-house
 - Result:
 - Facility & operational efficiency allows laaS providers to sell services "cheaply" while still earning a profit

A blunt truth

- Amazon Web Services owns the laaS space
 - No competitor is even close to achieving parity
 - Especially given the rate at which AWS rolls out new features, products & service enhancements
- The window for competitors to catch up is closing
 - Contenders:
 - Rackspace & Microsoft

AWS Rate of Change Examples

- Dec 2009
 - Amazon VPC launch
 - AWS Spot Instance launch
 - Windows Server 2008, SQL Server 2008 support
 - AWS Import/Export launch
 - US-West AWS region launch

- Feb 2010
 - SimpleDB consistency enhancements
 - Reserved Instances (Windows)
 - m2.xlarge EC2 instance type
 - AWS ConsolidatedBilling launch
 - S3 Object Versioning

AWS Building Blocks

What do we use to build our application?

My Cloud Application, workflow or analysis pipeline

Worldwide Physical Infrastructure

AWS Regions, Availability Zones & CloudFront Edge Locations

What's the big deal? **Enabling Science**

"Scriptable Infrastructure"

```
000
                chrisdag's terminal - ssh - 47×13
#!/bin/sh
rds-create-db-instance OID-SSO-MediaWiki1 ∖
-z us-east-1b ∖
-c db.m1.small ∖
-e MySQL5.1 \
  5 \
-u root ∖
--db-name wikidb < ./secure-db-password-file
dag@cloudseeder > 🗌
```


Scriptable Infrastructure

- AWS contains just about everything you would find in your own datacenter(s)
 - Except:
 - Your IT now 100% automated & scriptable
 - Deploy servers, software & services in minutes
 - Scale way bigger than you can handle locally
 - Your apps & data can now span continents
 - Services delivered cheaper than local cost*
 - * Requires honest accounting though...
- Anyone can drive this stuff, especially motivated researchers. This is a big deal.

What can I do today? **Enabling Science**

What works today (easy)

- Lowest hanging fruit
 - Software dev & test environments
- Other
 - Running legacy Linux apps is easy
 - Databases of moderate size
 - Exchanging data with collaborators
 - Building Grid Engine & LSF clusters and compute farms is pretty trivial
 - Self-contained workflows & pipelines
 - Any workflow built using cloud best practices

What works today (moderate)

- Moderate difficulty
 - "Cloud bursting"
 - Extending your current cluster "into the cloud"
 - Data heavy applications
 - Terabyte scale data mining with Hadoop
 - Large-scale data movement in general
- The main issue
 - Networking & VPN overlay networks

What is painful today (hard)

- Massive MPI applications
- Any latency-sensitive parallel application
- Large pipelines or workflows that can't be decomposed easily
- Overwhelmingly IO-bound applications
- When massive two-way data transit is required

Enough cheerleading

Lets talk about the problems & challenges

Three Main Challenges

- For HPC & Informatics in the Cloud:
- Architectural
 - Science != Facebook
- Technical
 - Mapping informatics to clouds often non-trivial
- Political
 - You didn't think we could keep politics out?

Architectural Challenges

Infrastructure clouds were not built for people like us

Architectural Challenges

- Cloud designed for large internet-scale services
- Delivered via:
 - Loosely coupled, asynchronous services
 - Significant replication & load balancing tricks
 - Eventual consistency model
- Not ideal for our needs:
 - We are used to tightly coupled & fast systems
 - We happily trade reliability & availability for additional performance & throughput
 - Scientists see eventual consistency as evil

Architectural Challenges

- Virtual everything is slow
 - Performance is sacrificed to provide the foundational services required by the extreme internet-scale Web 2.0 crowd
 - Particularly problematic in life science informatics where we are often performance bound by the speed of our storage systems

Architectural Challenges

- Radical effect on HPC & Grid Computing:
 - Many of us use large HPC clusters & compute grids within our organization
 - Large systems shared by multiple users, groups, workflows & projects; Platform LSF or Sun Grid Engine software to enable the shared infrastructure resource
 - Clouds allow dedicated resources for every user, problem, workflow & project
 - Turns traditional methods & practices upside down

Data movement & HPC hassles in the cloud ...

- This subject is worth a talk of its own
- No time to get really deep
- Brief comments on
 - Data Movement
 - Networks
 - Storage
 - Documentation & How-To pitfalls

- Data Movement
 - #1 issue/concern
 - Internet vs. FedEx?
 - One-way or bidirectional?
 - Not just the size of your pipe ...
 - Physical location matters as well

- Networks
 - No control over topology
 - Some nasty surprises for HPC people & software
 - Software VPNs for unifying network space work
 - ... but it's an insane hassle to set up and manage
 - Amazon VPC not quite there yet

Storage

- It's slow. Absolute fact.
- Various methods to mitigate or work around
- Among top 3

 implementation
 challenge in most
 workflows we've seen

"Bad" Documentation

- Just like the "beowulf cluster" days
- Most material written for an entirely different audience
 - Following some 'best practice' advice can actually hinder scientific workflows

Political Challenges

Now it gets really complicated ...

Political Issues

- Clouds raise significant internal issues
 - CapEx vs. OpEx issues
 - Who pays? How do we pay? Who monitors?
 - When do you port legacy apps to "the new cloud way"?
 - What does the support model look like?
 - What does the development model look like?
- Often encounter these issues:
 - ► IT staff protecting internal empires
 - Incredibly difficult to accurately track true fully loaded internal costs of local infrastructure
 - And if you can't do this, how can you claim the cloud will save money?

Remember This?

```
chrisdag's terminal - ssh - 47×13
#!/bin/sh
rds-create-db-instance OID-SSO-MediaWiki1 ∖
-z us-east-1b ∖
-c db.m1.small ∖
-e MySQL5.1 ∖
  5 \
-u root ∖
--db-name wikidb < ./secure-db-password-file
dag@cloudseeder > [
```


Politics & Scriptable IT

- What happens to IT roles when anyone with a web browser can instantly launch (and manage) a complex cluster, software pipeline or massive database?
- Radical restructuring of the lines between
 - Research staff & Investigators
 - IT Operations Staff
 - ▶ IT Support Staff

Scriptable Infrastructure

- For the first time some of our IT infrastructure might be 100% virtual and entirely controllable via scripts and APIs
- Anyone can drive this stuff, especially motivated researchers
- My prediction:
 - ▶ The role of "Systems Administrator" is going to change
 - More focus on toolsmithing, scripting, troubleshooting
 - Significant focus on enabling end users to be effective and self-supporting (as much as possible)
 - Interesting times ahead ...

Quick Security Thoughts

Quick Security Thoughts

- 1. Microsoft, Google & Amazon have better operating, audit and network security controls than you do.
- 2. I am suspicious of people demanding cloud security practices that they themselves have failed to deploy on their own infrastructure
- 3. Cloud providers will happily answer your deepest technical security questions

One new announcement

- BioTeam has formalized it's science-centric Amazon Cloud training materials:
 - ▶ 2-Day hands-on training classes "Mastering Amazon Web Services for Science & Engineering"
 - Two dates already announced, more coming.
 - September 2010 Providence, RI USA
 - November 2010 Hannover, Germany
 - I hate doing sales pitches, shoot me an email or find me afterwards if you are interested.

End;

- Thanks!
- Cloud Training info:
 - http://bioteam.net/aws
- Presentation slides will appear here:
 - http://blog.bioteam.net
- Comments/feedback:
 - chris@bioteam.net

