# **HPC From The Trenches**

2010 BiolTWorld Conference & Expo

*Track 1 – IT Infrastructure & Hardware* 





# Welcome!

### **Logistics & News**

- Volcano Victim
  - Phil Butcher's talk



# Why I'm here

- I'm from the BioTeam
  - Independent consulting shop
  - Staffed by scientists forced to learn IT to get our own research done
- Found a fun business niche
  - Bridging the "gap" between science, IT & high performance computing
- This matters because ...
  - We see many organizations of varying type, size & structure
  - Gives us good perspective on current state of the industry





# Disclaimer

- Spent 10+ years solving IT and informatics challenges in demanding production environments
  - This does not mean that I'm an expert in anything
- I am not / trying hard not to be:
  - "a visionary"
  - "a pundit"
  - "an industry expert"
- I speak personally about my views and experiences out in the field
  - Filter my words accordingly!





# Today's Remarks

# Observations Trends Issues • What we've seen • Current Trends • Headaches ahead • Emerging Trends



# **Opservations**Observations

What we've seen over the last year ...



### **Hardware**

- 10 Gigabit Ethernet
  - Not spreading as fast as I thought
  - Still mainly used for:
    - Linking storage to network
    - Linking edge switches to network core
    - Linking network core with Blade enclosure(s)



### **Hardware**

- Blades have not taken over
  - Blades vs. rackmount form factor still ongoing
  - In new datacenter projects we've seen both done very well
- Choice driven by:
  - Preferred methods for reducing operational burden
  - Preferred vendor agreements
  - Facility issues
    - Mainly power density per floor tile



### **CPU Architectures**

- x86\_64 still the overwhelming platform choice
- Dual-socket, quad-core Intel Nehalem used to be the server "sweet spot" in almost all cases
- This seems to be changing ...
  - AMD is back in the game
  - New trends in base hardware config are emerging



### **CPU Architectures**

- CPU selection methodologies seem to be changing
- Previous
  - 1. Benchmark with science apps & buy what works best
  - 2. Sub-select on performance/watt or performance/\$
- Now:
  - Non-science drivers heavily influencing CPU selection
- Why?
  - Enterprise needs take precedence:
    - Virtualization platform standard
    - Socket/core preferences



### **Distributed Resource Management**

- Sun Grid Engine & Platform LSF still going strong
  - Somewhat surprising to me
  - ... expected steady state & eventual decline
  - Oracle/Sun merger also complicating things
- Based on 2010 consulting ...
  - Grid Engine project count will be higher than 2009
  - New deployments & revamps of existing systems



### **Private Internal Compute Clouds**

- Still stupid in 2010
  - 5% useful, 90% empty hype & cynical marketing
- Two types of "private clouds" observed:
  - 1. Marketers excreting the "c-word" onto the same VMWare/Xen virtualization methods many of us have been using for ages
  - 2. Thinly veiled sales pitch from people aiming to gut and replace everything in your datacenter



### **Private Internal Compute Clouds**

- Hype aside, obstacle is mainly legacy/technical
  - "cloud benefits" come from serious automation and live migration of running servers & services
  - Currently both Xen & VMWare can only do live migration within a subnet:
    - How many of you run a single flat subnet that spans your entire datacenter?
    - ... your entire campus?
    - ... span multiple datacenters?



### **Cloud Computing**

- No longer considered edgy, cool or radical
- Used by few, investigated by most
- Almost ready to be called mainstream part of the IT resource toolkit within life science informatics
- Fills a need/niche, not a total solution



### **Cloud Computing**

- No longer cool? How did we get here?
  - Enterprise long trending away from monolithic tightly coupled applications
    - Web services, SOA's and loosely-coupled systems becoming common
    - Hypervisor-based virtualization proven, not-scary and absolutely mainstream
  - Many public SaaS & PaaS cloud success stories
  - ... feels like just another step in evolution of enterprise & research IT



### **Cloud Computing**

- Even in the most conservative IT shops
  - Virtualization no longer seen as risky or scary
  - Hypervisor methods delivering clear benefit
  - Google Apps, etc. showing SaaS is more than hype
- Thus
  - Significant curiosity in efforts that virtualize, automate and commoditize *infrastructure*
    - More than just server virtualization
    - More than just a development platform
    - "Infrastructure-as-a-Service" (IaaS) taking off



### **Tier 1 Storage**

- Chance that some Tier 1 storage vendors may slip
- Starting to see significant differentiation in features, performance and density
- Some vendors falling behind on supporting density that customers are asking for
  - If a storage vendor can't fit a petabyte (or more) of disk in a single rack they better have a good reason
  - ... because competitors are shipping such systems today



# Flops Failures & Freakouts

Storage war stories from 2009-2010



### #1 - Unchecked Enterprise Architects

- Scientist: "My work is priceless, I must be able to access it at all times"
- Storage Guru: "Hmmm...you want H/A, huh?"
- System delivered:
  - Small (< 50TB) Enterprise FC SAN</li>
  - Asynchronous replication to remote DR site
  - Can't scale, can't do NFS easily
  - ~\$500K/year in support & operational costs



### #1 - Unchecked Enterprise Architects

- Lessons learned
- Corporate storage architects may not fully understand the needs of HPC and research informatics users
- End-users may not be precise with terms:
  - "Extremely reliable" means "no data loss", not
     99.999% uptime at a cost of millions
- When true costs are explained:
  - Many research users will trade a small amount of uptime or availability for more capacity or capabilities



### #2 - Unchecked User Requirements

- Scientist: "I do bioinformatics, I am rate limited by the speed of file IO operations. Faster disk means faster science."
- Storage Guru: "Hmm. You want speed, huh?."
- System delivered:
  - Budget blown on top tier 'Cadillac' system
  - Fast everything
- Outcome:
  - System fills to capacity in 9 months, zero budget left



### #2 - Unchecked User Requirements

- Lessons learned
  - End-users demand the world
  - Necessary to really talk to them and understand their work, needs and priorities
- You will often find
  - The people demanding the "fastest" storage don't have actual metrics to present
  - Many groups will happily trade some level of performance in exchange for a huge win in capacity or capability



### #3 - D.I.Y Cluster/Parallel File systems

- Common source of storage unhappiness
- Root cause:
  - Not enough pre-sales time spent on design and engineering
- System as built:
  - Not enough metadata controllers
  - Poor configuration of key components
- End result:
  - Poor performance or availability



# #3 - D.I.Y Cluster/Parallel File systems

- Lessons learned:
  - Software-based parallel or clustered file systems are non-trivial to *correctly* implement
  - Essential to involve experts in the initial design phase
    - Even if using 'open source' version ...
  - Commercial support is essential
    - And I say this as an open source zealot ...



# Current Irends Control of the Contro



# **Current Trends**

#### "Fat" Hardware

- Significant increase in purchases of "fat" systems
  - 32+ CPU cores, 128GB RAM (or much more)
  - Available from many vendors these days
- Previously we saw these systems mainly with people doing annotation & assembly
- ... now we see many groups using them
  - Lots of applications for high-mem or big-SMP



# **Current Trends**

### "Fat" Clusters

- Cluster node sweet spot generally:
  - Dual-socket, quad-core Intel Nehalem
  - Bought by the dozens or hundreds
- Some people are
  - Building small clusters (2-6 nodes)
  - built from "fat" systems
- And in some cases ...
  - A single "fat" system can replace a small legacy cluster



# **Current Trends**

Storage



### **Single Namespace**

- 82.4 free terabyte of space in this folder
- Very satisfying





### Single Namespace

- 1.1 Petabytes free space
- Even more satisfying

```
Terminal - ssh - 84x22
                                       Avail Uses flourited on
 dev/ 5033
                        1477
                                               SER JEPS OF S
/dev/sct0
gon3-blue:- # []
```



# User Expectation Management

- End users still have no clue about the true costs of keeping data accessible & available
- "I can get a terabyte from Costco for \$220!" (Aug 08)
- "I can get a terabyte from Costco for \$160!" (Oct 08)
- "I can get a terabyte from Costco for \$124!" (April 09)
- "I can get a terabyte from NewEgg for \$84!" (Feb 10)
- IT needs to be involved in setting expectations and educating on true cost of keeping data online & accessible





### In 2008

- First 100TB single-namespace project
- First Petabyte+ storage project
- 4x increase in "technical storage audit" work
- First time witnessing 10+TB catastrophic data loss
- First time witnessing job dismissals due to data loss
- Data Triage discussions are spreading well beyond costsensitive industry organizations





#### In 2009

- More of the same
  - 100TB not a big deal any more
  - Even smaller organizations are talking (or deploying) petascale storage





### Now in 2010 ...

- Peta-scale is no longer scary
- A few years ago 1PB+ was somewhat risky and involved significant engineering, experimentation and crossed fingers
  - Especially single-namespace
- Today 1PB is not a big deal
  - Many vendors, proven architectures
  - Now it's a capital expenditure, not a risky technology leap





### Now in 2010 ...

- Worrisome Trend
  - Significant rise in storage requirements for postinstrument downstream experiments and mashups
  - The decrease in instrument generated data flows may be entirely offset by increased consumption from users working downstream on many different efforts & workflows
    - ... this type of usage is harder to model & predict



chris@bioteam.net - http://www.bioteam.net



# Emerging Trends

Don't hold me to these ...



## **Potential Trends**

#### **Cloud PaaS in the lab**

- Cloud platform services well established
- Potentially a very good fit for:
  - Inventory tracking & sample management
  - LIMS systems
  - Protocol or experiment management
- It would be nice to replace those dusty vendorlocked and hard to support PC systems scattered under various lab benches ...



## **Potential Trends**

#### **Cloud Storage**

- Google, Amazon, Microsoft, etc. all operate at efficiency scales that few can match
  - Cutting-edge containerized datacenters with incredible PUE values
  - Fast private national and transnational optical networks
  - Rumors of "1 human per XX,000 servers" automation efficiency, etc.
  - Dozens or hundreds of datacenters and exabytes of spinning platters

#### **My Argument**

- Not a single person in this room can come anywhere close to the IT operating efficiencies that these internet-scale companies operate at every day
- Someone is going to eventually make a compelling service/product offering that leverages this ...



## **Potential Trends**

#### **Cloud Storage**

- Cheap storage is easy, we all can do this
- Geographically replicated, efficiently managed cheap storage is not easy
  - ... or not cheap
- When the price is right ...
  - I see cloud storage as being a useful archive or deep storage tier
    - Probably a 1-way transit
    - Data only comes "back" if a disaster occurs
    - Data mining & re-analysis done in-situ with local 'cloud' server resources if needed
- Not ready for prime time yet ask me again in 2011
  - Many questions, concerns & issues all valid
  - May never be ready for production/enterprise use
  - My gut feeling is that majority of obstacles are surmountable





Major & minor things I expect to bother me in 2010



#### Virtualization & "Fat" nodes

- People are well underway with full-on virtualization strategies
- However, some of the "fat" nodes have CPU and memory resources that exceed what a hypervisor can easily provision



#### **Internet speeds & cloud performance**

- Not all of us can get on heavily subsidized high speed research networks
- Our connection to the internet & external collaborator sites is becoming more and more important
- Even worse, it's not just the size of the pipe that matters. Your location & peering arrangements matter.
  - BioTeam/Boston -> Amazon S3 Storage Cloud
    - Full utilization of available pipe (we were the bottleneck)
  - Sanger/UK -> Amazon S3 Storage Cloud
    - 10% utilization of available circuit speed



#### **Exploding size of downstream data**

- The next-gen DNA sequencing data deluge will eventually go away
- However
  - Storage consumption by researchers working on variations & mashups of this data is rising fast
  - This use case is much harder to model & predict than output from a lab instrument
  - Will cause headaches in 2010 and beyond
- Expect some words from Matthew Trunnell on this



#### Cloud Best Practices, HowTo's & online documentation

- Feels just like the Beowulf-cluster days
  - Available documentation simply wrong for the needs of the life science community
- If you followed the internet advice:
  - You'd have ended up building a cluster architected primarily for running latency-sensitive MPI applications
  - Useful but not the best design most for life science informatics requirements & use cases



#### Cloud Best Practices, HowTo's & online documentation

- Same thing is happening with cloud practices
- Example Google Search:
  - Improving performance of Amazon EBS storage
  - What you'll find:
    - Docs mainly written by hardcore database people
      - ... who mainly care about random IO performance
    - This is not generally our primary concern
    - Following the online recommendations might cost extra money while yielding little in the way of actual performance gain



#### Accurate accounting for the true cost of IT operations & services

- Becoming essential to know in detail what it costs to maintain, run, staff & operate your IT infrastructure
- This is quite hard and subject to political manipulation in some cases
- If you can't do this accurately ...
  - Impossible to know if alternatives or cloud approaches are worth pursuing



#### Accurate accounting for the true cost of IT operations & services

- Example from yesterday's cloud workshop
- Amylin Pharmaceuticals talk:
  - Huge effort to construct a spreadsheet that tracked the real cost of delivering each IT service
    - When compared against actual budget, the spreadsheet was accurate to within \$2K out of a 20M budget!
  - Incredible benefits from this data
    - Realized it cost \$2M/year to run HR internally
    - Many IT staff simply "keeping lights running" and not driving business or scientific success
    - Information shared widely, senior managers really did not like being associated with the most expensive services
    - ... lead to organizational changes & operational methods that deliver huge recurring savings



**Cloud Politics & the changing role of research IT** 



#### Clouds raise internal issues ...

- CapEx vs. OpEx issues
- Who pays? How do we pay? Who monitors?
- When do you port legacy apps to "the new cloud way"?
- What does the support model look like?
- What does the development model look like?

#### Often see ...

- IT staff protecting internal empires
- Incredibly difficult to accurately track true fully loaded internal costs of local infrastructure
- And if you can't do this, how can you claim the cloud will save money?



#### "Scriptable Infrastructure" is a BIG DEAL

```
chrisdag's terminal - ssh - 47×13
rds-create-db-instance OID-SSO-MediaWiki1 \
 z us-east-1b \
 c db.ml.small \
   MySQL5.1 \
  root \
--db-name wikidb < ./secure-db-password-file
dag@cloudseeder >
```

This single command will start a 5GB managed MySQL database in the Amazon cloud for \$0.11/hour. The database is *automatically* patched, managed and backed up. Planned enhancements include auto-scaling & snapshots.



# Politics & Scriptable IT

- What happens to IT roles when anyone with a web browser can instantly launch (and manage) a complex cluster, software pipeline or massive database?
- Radical restructuring of the lines between
  - Research staff & Investigators
  - IT Operations Staff
  - IT Support Staff



# Scriptable Infrastructure

- For the first time some of our IT infrastructure might be 100% virtual and entirely controllable via scripts and APIs
- Anyone can drive this stuff, especially motivated researchers
- My prediction:
  - The role of "Systems Administrator" is going to change
  - More focus on toolsmithing, scripting, troubleshooting
  - Significant focus on enabling end users to be effective and selfsupporting (as much as possible)
  - Interesting times ahead ...



# And with that ...



# end;

- Thanks!
- Talk slides will be up on <a href="http://blog.bioteam.net">http://blog.bioteam.net</a>
   shortly
- Comments/feedback <chris@bioteam.net>