
Structured Data
Storage
Xgen Congress Short Course
2010

Adam Kraut

BioTeam Inc.

  Independent
Consulting Shop:
Vendor/technology agnostic

 Staffed by:
▸  Scientists forced to learn

High Performance IT to
conduct research

  Our specialty:
Bridging the gap between
Science & IT

Data Management Buzzwords
  Linked Data
  NoSQL
  Distributed Database
  Non-Relational (Schema-free)
  Document-based
  Object-based
  Key-value
  Partitioning
  Fault Tolerance

One Size Does Not Fit All
  RDBMS have become ubiquitous
▸  Often synonymous with the term database

  Databases precede the implementation relational
systems

  Structured storage extends far beyond the
relational realm

  90% of applications are using 10% of the features
of modern RDBMS

Scaling RDBMS
  “An infinitely scalable relational database is an

engineering impossibility” – Werner Vogels

Database taxonomies

Features
First

Scale
First

Simple
Structured
Storage

Purpose
Optimized
Storage

Feature-first
  Oracle
  SQL Server
  PostgreSQL
  MySQL

  Even in large enterprises, a single database
instance can support the entire workload

Scale-first
  Scale is more important than features
  When a single RDBMS won’t cut it
▸  Shard the data over a large number of systems

  Full relational model is impossible to scale
▸  Cross-instance joins
▸  Aggregations
▸  Globally unique secondary indexes
▸  Global stored procedures

  Examples
▸  DB2 Parallel Edition
▸  Oracle Real Application Clusters (RAC)

Purpose Optimized Storage
  Special purpose
  Often designed to beat commercial RDBMS on

specific benchmarks

  Event stream processing
  Data warehousing products

  Examples
▸  Aster Data, Netezza, Greenplum

Simple Structured Storage
  Simple, cheap, fast
  Low operational burden

  Examples
▸  BerkeleyDB
▸  SimpleDB
▸  MongoDB

Alternative Database Engines
  BerkeleyDB -

http://www.oracle.com/database/berkeley-db
  memcached - http://memcached.org
  BigTable - http://labs.google.com/papers/bigtable.html
  HBase - http://hadoop.apache.org/hbase
  CouchDB - http://couchdb.apache.org
  MongoDB - http://www.mongodb.org
  Tokyo Cabinet - http://1978th.net/tokyocabinet
  Redis - http://code.google.com/p/redis
  Riak - http://riak.basho.com
  Cassandra - http://incubator.apache.org/cassandra

MongoDB
  Document-oriented storage (JSON-like schema)
  Written in C++
  Fast, in-place updates
  Replication, and fail-over support
  Auto-sharding
  MapReduce for aggregations
▸  Written in Javascript

Redis
  Fast, in memory key-value store
  STRING, LIST, SET, and ZSET data types
  Persistence via async snapshots
  Perfect Data Structures/State/Cache Server

SimpleDB
  Hierarchical structure, not a table
  Schema-less

▸  Attributes only exist when associated with a value
▸  No NULL values

  Limited query capability
▸  No SQL
▸  No joins

  All data is stored as text
▸  No data types

  Limited Attribute Sizes (1024 bytes)
  Eventual consistency model

▸  Information may be slightly out of date

NoSQL Hype vs. Reality
  Schema-free
  Scalable
  Fast
  Hierarchical data

structures

  No general-purpose
query language
▸  Yet another

language to learn
  Many-to-many

relationships are
problematic

  Lacking tool support
  Lacking library

support

BioTeam’s Use of NoSQL

  Today…
  WikiLIMS
▸  Semantic MediaWiki (RDF Triple store)

  Configuration Management Framework
▸  Chef (CouchDB)

  Amazon Web Services Workflows
▸  SimpleDB to store state

Schema-Free

http://aws.amazon.com/

Schema-Free MySQL

Properties of Distributed
Systems
  Design for failure
▸  Disks will fail
▸  When is RAID6 unacceptable (2019?)
▸  Nodes will fail

  Must maintain data consistency
▸  Is it useful otherwise?

  Network partitioning

Eventual Consistency
  “when no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the replicas will be consistent”

  Eventually all clients will see the updates

CAP Theorem

Consistency

Partitioning Availability

Balancing the tradeoffs…
  Three properties of shared-data systems
▸  Consistency of the data
▸  Availability of the system
▸  Partition tolerance

  Only two can be achieved at any given time
  Network partitions are a given
  See also: Project Triangle
▸  Good, Fast, Cheap… pick two.

BigTable

Map Reduce

Dynamo

Cassandra

Thrift

Things to consider…
  Nested data structures
  Document-model
  BLOBS
  Natural partitions
  Client access patterns
  Eventual Consistency

NoSQL in Practice
  Choose the right storage system for your data
  De-normalize your data
  No ACID guarantees
  Do JOINs in your application code
  Less well suited for
▸  Highly-transactional systems
▸  Traditional BI systems
▸  Problems that require SQL

Example: SNPs in SimpleDB

Example: Storing short-reads
  2.8 million unique reads loaded
  0.5 million reads retrieved
  Single node system

http://bcbio.wordpress.com/

NoSQL use cases
  Real-time analytics
▸  Fast real-time inserts, updates, and queries

  Problems requiring high scalability
▸  Tens or hundreds of servers
▸  Replication/sharding built-in

  Persistent object store
▸  Think persistent memcached

  Document or key-value oriented schemas
▸  JSON-like data schemas

That’s it
  Thanks!

  kraut@bioteam.net
  www.twitter.com/adamkraut
  www.friendfeed.com/adamk
  blog.bleedingedgebiotech.com

