
Structured Data
Storage
Xgen Congress Short Course
2010

Adam Kraut

BioTeam Inc.

  Independent
Consulting Shop:
Vendor/technology agnostic

 Staffed by:
▸  Scientists forced to learn

High Performance IT to
conduct research

  Our specialty:
Bridging the gap between
Science & IT

Data Management Buzzwords
  Linked Data
  NoSQL
  Distributed Database
  Non-Relational (Schema-free)
  Document-based
  Object-based
  Key-value
  Partitioning
  Fault Tolerance

One Size Does Not Fit All
  RDBMS have become ubiquitous
▸  Often synonymous with the term database

  Databases precede the implementation relational
systems

  Structured storage extends far beyond the
relational realm

  90% of applications are using 10% of the features
of modern RDBMS

Scaling RDBMS
  “An infinitely scalable relational database is an

engineering impossibility” – Werner Vogels

Database taxonomies

Features
First

Scale
First

Simple
Structured
Storage

Purpose
Optimized
Storage

Feature-first
  Oracle
  SQL Server
  PostgreSQL
  MySQL

  Even in large enterprises, a single database
instance can support the entire workload

Scale-first
  Scale is more important than features
  When a single RDBMS won’t cut it
▸  Shard the data over a large number of systems

  Full relational model is impossible to scale
▸  Cross-instance joins
▸  Aggregations
▸  Globally unique secondary indexes
▸  Global stored procedures

  Examples
▸  DB2 Parallel Edition
▸  Oracle Real Application Clusters (RAC)

Purpose Optimized Storage
  Special purpose
  Often designed to beat commercial RDBMS on

specific benchmarks

  Event stream processing
  Data warehousing products

  Examples
▸  Aster Data, Netezza, Greenplum

Simple Structured Storage
  Simple, cheap, fast
  Low operational burden

  Examples
▸  BerkeleyDB
▸  SimpleDB
▸  MongoDB

Alternative Database Engines
  BerkeleyDB -

http://www.oracle.com/database/berkeley-db
  memcached - http://memcached.org
  BigTable - http://labs.google.com/papers/bigtable.html
  HBase - http://hadoop.apache.org/hbase
  CouchDB - http://couchdb.apache.org
  MongoDB - http://www.mongodb.org
  Tokyo Cabinet - http://1978th.net/tokyocabinet
  Redis - http://code.google.com/p/redis
  Riak - http://riak.basho.com
  Cassandra - http://incubator.apache.org/cassandra

MongoDB
  Document-oriented storage (JSON-like schema)
  Written in C++
  Fast, in-place updates
  Replication, and fail-over support
  Auto-sharding
  MapReduce for aggregations
▸  Written in Javascript

Redis
  Fast, in memory key-value store
  STRING, LIST, SET, and ZSET data types
  Persistence via async snapshots
  Perfect Data Structures/State/Cache Server

SimpleDB
  Hierarchical structure, not a table
  Schema-less

▸  Attributes only exist when associated with a value
▸  No NULL values

  Limited query capability
▸  No SQL
▸  No joins

  All data is stored as text
▸  No data types

  Limited Attribute Sizes (1024 bytes)
  Eventual consistency model

▸  Information may be slightly out of date

NoSQL Hype vs. Reality
  Schema-free
  Scalable
  Fast
  Hierarchical data

structures

  No general-purpose
query language
▸  Yet another

language to learn
  Many-to-many

relationships are
problematic

  Lacking tool support
  Lacking library

support

BioTeam’s Use of NoSQL

  Today…
  WikiLIMS
▸  Semantic MediaWiki (RDF Triple store)

  Configuration Management Framework
▸  Chef (CouchDB)

  Amazon Web Services Workflows
▸  SimpleDB to store state

Schema-Free

http://aws.amazon.com/

Schema-Free MySQL

Properties of Distributed
Systems
  Design for failure
▸  Disks will fail
▸  When is RAID6 unacceptable (2019?)
▸  Nodes will fail

  Must maintain data consistency
▸  Is it useful otherwise?

  Network partitioning

Eventual Consistency
  “when no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the replicas will be consistent”

  Eventually all clients will see the updates

CAP Theorem

Consistency

Partitioning Availability

Balancing the tradeoffs…
  Three properties of shared-data systems
▸  Consistency of the data
▸  Availability of the system
▸  Partition tolerance

  Only two can be achieved at any given time
  Network partitions are a given
  See also: Project Triangle
▸  Good, Fast, Cheap… pick two.

BigTable

Map Reduce

Dynamo

Cassandra

Thrift

Things to consider…
  Nested data structures
  Document-model
  BLOBS
  Natural partitions
  Client access patterns
  Eventual Consistency

NoSQL in Practice
  Choose the right storage system for your data
  De-normalize your data
  No ACID guarantees
  Do JOINs in your application code
  Less well suited for
▸  Highly-transactional systems
▸  Traditional BI systems
▸  Problems that require SQL

Example: SNPs in SimpleDB

Example: Storing short-reads
  2.8 million unique reads loaded
  0.5 million reads retrieved
  Single node system

http://bcbio.wordpress.com/

NoSQL use cases
  Real-time analytics
▸  Fast real-time inserts, updates, and queries

  Problems requiring high scalability
▸  Tens or hundreds of servers
▸  Replication/sharding built-in

  Persistent object store
▸  Think persistent memcached

  Document or key-value oriented schemas
▸  JSON-like data schemas

That’s it
  Thanks!

  kraut@bioteam.net
  www.twitter.com/adamkraut
  www.friendfeed.com/adamk
  blog.bleedingedgebiotech.com

