Antibodies: Nature's Solution to Molecular Recognition

Antibodies target abnormal material for immune neutralization/clearance

Up to 1 billion unique antigen recognition surfaces in a healthy adult

Engineered antibodies emerging as dominant new class of next generation therapeutics

Ultra-High throughput screening: Phage display

Phage display libraries: engineered virus populations that can display human antibodies on their surface coats

Enables human antibody selection

□All human germline families in Pfizer-lib

Enables immune system pooling

☐ 654 human donors combined in Pfizer-lib

Enables ultra-high throughput screening

☐ Forty billion transformants in Pfizer-lib

The single-chain Fv antibody fragment

Pfizer donor-derived IgM scFv library

mRNA

cDNA 3'◀

Materials

- ► 654 human donors
- IgM Vh amplification
- ▶ Naïve, memory, plasma
- All human germline families

Construction

- scFv format
- Random assortment of H/L chains
- ► 3.1+/-0.7x10E10 transformants

Panning

- ▶ 16 diverse antigens panned
- >100,000 sequences recovered
- >20,000 unique antibodies

The scFv binding surface is discontinuous over 900bp

Antibody Diversity Prohibits Assembly

Read Lengths of Available Next Generation Sequencers

Instrument	Reads [10^6]	Read length
Roche 454 GS FLX	1-2	250-500bp
Illumina GA III	138-168	150 (2x75)bp
Illumina HiSeq 2000	<1000	2x100bp
Life Tech SOLiD 3	400	25-50bp
Helicos HeliScope	400	25-50bp

Minimum Read Length requirements for diversity estimate

scFv Insert Architecture

Assessment of a Phage Display Library Diversity by 454 Sequencing - Sample Preparation Strategies

Sequences Obtained

Raw Reads

- ► 554,310 amplicon reads
- ▶ 923,875 RCA shotgun reads

High Quality Reads

- ▶ 96,303 Full VH in-frame reads
- ▶ 98,946 Full VK/L in-frame reads

How to meaningfully quantify diversity

A definition of diversity that measures unique binding surfaces

- Single mutations in CDRs probably won't be enough to change the recognition potential
- Mutations outside the CDRs & Vernier zones are much less likely to fundamentally alter the binding profile
- Substitution errors, while rare, do occur
- Silent mutations have no effect on binding at all
- Solution: Capture recapture
- Non-redundant CDR amino acid diversity definition

How to reliably classify germline origins?

$$S_i = 1 - \sum_{g=1}^{G} \frac{P((\lambda - \delta_{ig}), (\mu_g - \delta_{ig}))}{P(\lambda, \mu_g)} \left| g \neq i \right|$$

Asks "what are the odds that mutations in very specific positions would cause me to erroneously classify this sequence?"

Validation of probabilistic germline classification

Germline sequences randomly mutated and reclassified

8 errors in 250,000 classifications All errors occurred when over 40 simulated mutations had been applied Somatic mutation rate in actual sequence data

95% of actual sequences recovered had less than 30 Mutations from closest germline framework

The Challenge of CDR Recognition

Multiple revised numbering systems

- Kabat
- Chotia
- Aho

Difficulty applying numbering systems

- ▶ 10% Kabat sequences mislabeled by own numbering system
- Rosetta Antibody Modeler fails to identify all CDRs in 30% of cases

Cause of problem?

- Length diversity
- somatic hypermutation

Kabat-Labeled HMM Construction

Amino Acid Alignment

Kabat numbering

Hidden Markov Model (HMMER)

How to identify and align diverse antibody sequences?

Query

Optimal path through HMM determined probabilistically

Probability of resulting sequence compared to probability of a random sequence (e-value)

Sequences with low e-values identified as bearing ig-like content

OMVLLOSGGKLKGPNY

HMM Path Becomes an alignment:

Consensus Q-VQLQESGPGLVKP-Query QMVLLQ-SGGKLKGPNY

Validation of CDR Recognition accuracy

HMM CDR recognition was evaluated structurally

- ▶ 779 reference structures were structurally superposed
- Sequences of references structures were extracted
- ► Reference structure sequences were aligned to HMM
- Predicted boundary positions were compared to structure

HMM CDR recognition was highly accurate

▶ 99.93% boundary recognition accuracy

Amplicons Establish Non-Redundant CDR Diversity

Raw Reads

- ▶ 554,310 amplicon reads
- ▶ 923,875 RCA shotgun reads

High Quality Reads

- ▶ 96,303 Full VH in-frame reads
- ▶ 98,946 Full VK/L in-frame reads

NR-Vh CDR diversity

- ► CDR-H1: 10E2
- ► CDR-H2: 10E4
- CDR-H3: 10E5
- ► Total Vh CDRs: 2.2+/-0.2 * 10E5

NR-VI/k CDR diversity

- CDR-L1: 10E3
- ► CDR-L2: 10E2
- ► CDR-L3: 10E4
- ► Total Vh CDRs: 1.6+/-0.8 * 10E5

RCA Shotgun Confirms H/L Random Assortment

Raw reads

923,875

95.6% of GS-linker expected by design Full length clones dominate library Random H/L assortment

Total paratope diversity estimates possible

Effects: Estimating diversity of donor derived library

- 1.5 million variable domain sequences obtained by 454 Roche Titanium chemistry pyrosequencing
- Developed novel application of Kabat column-labeled profile Hidden Markov Models (HMM)
- Used capture-recapture estimates with rarefaction to estimate total functional paratope diversity
- Forty billion distinct binding surfaces (4x10¹⁰)

Future Applications: Immune Surveillance

Optimized phage display library design

- QC products at multiple stages of library assembly
- Modify library designs to optimize functional diversity

Adaptive immune repertoire surveillance

- Patient stratification
- Autoimmunity
- Pathogen response
- Subunit vaccine optimization
- Powerful biomarker for primary research

Sequence Analysis Summary: Beyond Assembly

Obstacles:

- Repertoire still too large for achieving coverage
- Somatic hypermutation prohibits assembly
- CDR recognition not trivial
- Indel errors during homopolymeric stretches
- Correlation of CDR mutations required

Solutions:

- Assembly-free sequencing
- Hidden Markov Model References
- ☐ Titanium Chemistry long reads
- □ Shotgun RCA for H/L independence
- □ Capture-recapture of NR translated CDRs for diversity

LIMS: Conclusions

454 Sequencing Environment enabled development

- Linux operating system on instrument and Titanium cluster
- Open data repository and well-documented data structure

WikiLIMS enabled rapid data interface development

- ▶ Direct filesystem access to 454 Sequencing files
- Modular embedded database views from external sources
- Efficient data & analysis display
- Coast-to-coast data sharing
- Backup monitoring

Diversity of donor-derived library

Glanville, Zhai, Berka et al. 2009, PNAS

24

■ E ■ Q

■ F ■ R

■G ■S

■ VH

■ VK

■ VL