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UNIX ESSENTIALS 



Unix command line essentials 
“pwd”:   Print current working directory (where am I?) 
“ls”:   File listing 
“ls –l”:   Detailed file listing, including permissions 
“cd”:   Change directory 
“chmod”:  Change file permissions 
“echo”:   Print something to the terminal 
“more”:  Show contents of a text file 
“pico”   Text editor 

“man”:   Documentation on any Unix command: 



Basic Unix Exercises:  Making directories 
What directory am I currently in? 

Remora:~ cdwan$ pwd 
/Users/cdwan/ 

Create a directory named “test_1” 
Remora:~ cdwan$ mkdir test_1 
Remora:~ cdwan$ ls 
test_1 

Change into that directory, and verify that we are there. 
Remora:~ cdwan$ cd test_1 
remora:test_1 cdwan$ pwd 
/Users/cdwan/test_1 



More basic Unix 
Return to your home directory: 

“cd” with no arguments 

Exit the session: 
“exit” 



File editing. 
“The best script editor” is the subject of an ongoing religious war in 

technical circles 

You should use the tool that does not get in your way. 

“vi”:    lightweight, complex, powerful, difficult to use 
“emacs”:   heavyweight, complex, powerful, difficult to use 
“pico”:   Possibly the simplest editor to use 

To edit a file:  “pico filename” 



Hello world in ‘bash’ 
“Bash” is a shell scripting language. 

–  It is the default scripting language that you have at the terminal. 
–  I.e:  You are already using it. 
–  We will take this command: 

remora:test_1 cdwan$ echo "hello world" 
hello world 

And create a wrapper script to do the same thing: 

remora:test_1 cdwan$ pico hello.sh 
remora:test_1 cdwan$ chmod +x hello.sh 
remora:test_1 cdwan$ ./hello.sh 
hello world 



Running a set of bash commands 
Using pico, create a file named “hello.sh” containing a single line: 

echo "hello world" 

Exit pico.  Verify the contents of the file: 

remora:ex_1 cdwan$ more hello.sh  
echo "hello world" 

Then invoke it using the ‘bash’ interpreter: 

remora:ex_1 cdwan$ bash hello.sh  
hello world 



Hello world script 
remora:test_1 cdwan$ pico hello.sh 

#!/bin/bash 

echo "hello world” 

The “#!” line tells the system to automatically run it using bash 
Ctrl-O:  Save the file 
Ctrl-X:   Exit pico 



File permissions 
Files have properties: 

–  Read, Write, Execute 
–  Three different types of user:  “owner”, “group”, “everyone” 

To take a script you have written and turn it into an executable program, 
run “chmod +x” on it. 

remora:test_1 cdwan$ ls -l hello.sh  
-rw-r--r--  1 cdwan  staff  32 Dec 14 21:56 hello.sh 

remora:test_1 cdwan$ chmod +x hello.sh 

remora:test_1 cdwan$ ls -l hello.sh  
-rwxr-xr-x  1 cdwan  staff  32 Dec 14 21:56 hello.sh 



Execute the hello world script 
remora:test_1 cdwan$ pico hello.sh 

remora:test_1 cdwan$ chmod +x hello.sh 

remora:test_1 cdwan$ ./hello.sh 
hello world 



SUBMITTING SGE SCRIPTS 



Most useful SGE commands 
•  qsub / qdel 

–  Submit jobs & delete jobs 

•  qstat & qhost 
–  Status info for queues, hosts and jobs 

•  qacct 
–  Summary info and reports on completed job 

•  qrsh 
–  Get an interactive shell on a cluster node 
–  Quickly run a command on a remote host 

•  qmon 
–  Launch the X11 GUI interface 
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Interactive Sessions 
To generate an interactive session, scheduled on any node:  

“qlogin” 

applecluster:~ cluster$ qlogin!

Your job 145 ("QLOGIN") has been submitted!
waiting for interactive job to be scheduled ...!
Your interactive job 145 has been successfully scheduled.!
Establishing /common/node/ssh_wrapper session to host node002.cluster.private ...!
The authenticity of host '[node002.cluster.private]:50726 ([192.168.2.2]:50726)' 

can't be established.!
RSA key fingerprint is a7:02:43:23:b6:ee:07:a8:0f:2b:6c:25:8a:3c:93:2b.!
Are you sure you want to continue connecting (yes/no)? yes!
Warning: Permanently added '[node002.cluster.private]:50726,[192.168.2.2]:

50726' (RSA) to the list of known hosts.!
Last login: Thu Dec  3 09:55:42 2009 from portal2net.cluster.private!

node002:~ cluster$ !

all.q@node002.cluster.private  BIP   1/8       0.00     darwin-x86    !
    145 0.55500 QLOGIN     cluster      r     12/15/2009 09:15:08  !



Requesting the whole node 
qlogin -pe threaded 8 

all.q@node014.cluster.private  BIP   8/8       0.00     darwin-x86     
    146 0.55500 QLOGIN     cluster      r     12/15/2009 09:34:58     8 

We request a parallel environent called “threaded” (note, this PE does not 
exist by default in SGE – we create it in iNquiry)  

We request 8 slots within that environment 

Now, no other jobs will be scheduled to your node while that login is in 
place. 



Most basic job example 
qsub –b y /bin/hostname!

You will see two new files in your home directory: 
hostname.oYYY!
hostname.eYYY!

YYY is the job id provided by the queuing system. 

These are the standard output and standard error files from running /bin/
hostname on one of the nodes. 

Argument “-b y” indicates that this is a a compiled binary.  SGE will not 
try to parse the input, but merely run it. 



Creating the sleeper script 

#!/bin/bash 

echo “hello world” 

sleep 60 
hostname 

Then run like this: 
remora:test_1 cdwan$ cp hello.sh sleeper.sh 
remora:test_1 cdwan$ pico sleeper.sh  
remora:test_1 cdwan$ ./sleeper.sh  
hello world 

remora.local 



Submitting the sleeper script  
genesis2:example bioteam$ qsub -cwd –S /bin/bash sleeper.sh  
Your job 217 ("sleeper.sh") has been submitted 

genesis2:example bioteam$ qstat 
job-ID  prior   name       user         state submit/start at     

queue                          slots ja-task-ID  
------------------------------------------------------------------

------ 

    217 0.55500 sleeper.sh bioteam      r     12/14/2009 12:00:46 
all.q@node004.cluster.private      1  



Adding arguments directly into the script 
#!/bin/bash 

#$ -S /bin/bash 
#$ -cwd 

echo "hello world” 

sleep 60 

hostname 

Any comment that starts with “#$” is interpreted as an argument to qsub. 

In case of conflict, the command line wins. 



More SGE commands 
•  “qstat –f”:   Show all queues, even the empty ones 
•  “qstat –u \*”:  Show jobs from all users 
•  “qstat –f –u \*”:  Both all queues and uses 

•  “qdel job_id”:  Delete a particular job 
•  “qdel –u cdwan”: Delete all jobs run by user cdwan 



Giving your job a name 
#!/bin/bash 
#$ -S /bin/bash 
#$ -cwd 
#$ -N sleeper 

echo ”Hello world” 
sleep 60 
hostname 

genesis2:demo bioteam$ qsub sleeper.sh  
Your job 222 ("sleeper") has been submitted 



Resource Requirements 
genesis2:demo bioteam$ qsub -l arch=solaris sleeper.sh  
Your job 225 ("sleeper") has been submitted 

genesis2:demo bioteam$ qstat 
job-ID  prior   name       user         state 
---------------------------------------------- 
    225 0.00000 sleeper    bioteam      qw 

We specify a resource requirement that cannot be met (there are no solaris machines 
in the cluster) 

Qstat –j 225 tells the story: 

 (-l arch=solaris) cannot run at host "node008.cluster.private" because it offers only 
hl:arch=darwin-ppc 



Environment variables from SGE 
SGE sets several variables in the script for you. 

–  JOB_ID   numerical ID of the job 

#!/bin/bash 
#$ -S /bin/bash 
#$ -cwd 
#$ -N sleeper 

echo "My job id is " $JOB_ID 
sleep 60 

genesis2:demo bioteam$ more sleeper.o221  
My job id is  221 



Job dependencies 
genesis2:demo bioteam$ qsub -N ”primary” sleeper.sh!

genesis2:demo bioteam$ qsub -hold_jid primary -N 
"secondary" sleeper.sh !

Your job 224 ("secondary") has been submitted!

genesis2:demo bioteam$ qstat!
job-ID  prior   name       user         state!
-----------------------------------------------!
    223 0.55500 primary    bioteam      r!
    224 0.00000 secondary  bioteam      hqw!



Redirecting output 
#!/bin/bash 

#$ -S /bin/bash 

#$ -cwd 
#$ -o task.out 
#$ -e task.err 

echo "Job ID is " $JOB_ID 



Task arrays 
#!/bin/bash 

#$ -S /bin/bash 

#$ -cwd 

#$ -N task_array 
#$ -o task.out 

#$ -e task.err 

echo "Job ID is " $JOB_ID “ Task is “ $SGE_TASK_ID 



Task arrays 
genesis2:example_2 bioteam$ qsub -t 1-10  task.sh  

Your job-array 228.1-10:1 ("task_array") has been 
submitted 

genesis2:example_2 bioteam$ more task.out 

Job ID is  228  Task ID is  10 

Job ID is  228  Task ID is  1 

Job ID is  228  Task ID is  3 

Job ID is  228  Task ID is  4 

•  … 



Perl instead of bash 
My “hello world” script, using Perl instead of Bash: 

remora:~ cdwan$ more hello_world.pl !
#!/usr/bin/perl!
#! –S /usr/bin/perl!

sleep(60);!
print "Hello world\n";!

Submitted to the queuing system: 
qsub hello_world.pl!



PERFORMANCE TUNING / 
PARALLELIZATION 



Parallel Jobs 
•  A parallel job runs simultaneously across multiple servers 

–  Biggest SGE job I’ve heard of:  Single application running across 63,000 
CPU cores:  TACC “Ranger” Cluster in Texas 

–  Distinction with ‘batches’ of processes that include many tasks to be done 
in any order 
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Amdahl’s Law 

Maximum expected speedup for 
parallelizing any task 
–  Serial portion (non parallelizable) 
–  Parallel portion (can be parallelized) 

Additionally: 
–  Cost associated with using more 

machines (startup, teardown) 
–  At least, scheduling.  Possibly some 

other factors like communication  
–  Communication scales with number 

of processes 

Important to note: 
Re-stating the problem can radically alter 

the serial / parallel ratio 



Network Latency 
•  Latency:   

–  Time to initiate communication 
•  Throughput:   

–  Data rate once communication is established 

•  Gigabit Ethernet: 
–  Latencies:  ~100ms 
–  Throughputs up to 80% of wire speed (800Mb/sec) 
–  $10 / network port 

•  Myranet / Infiniband: 
–  Latencies:  ~3ms 
–  Throughput:  80% of wire speed 
–  $800 / network port 



RUNNING PARALLEL TASKS 



Parallel Jobs 
Many different software implementations are used to support parallel 

tasks: 
–  MPICH 
–  LAM-MPI 
–  OpenMPI 
–  PVM 
–  LINDA 

No magic involved 
–  Requires work 
–  Your application must support parallel methods 



Submitting a standalone MPI job 
Build the code with a particular version of MPI: 

genesis2:examples bioteam$ pwd         
/common/mpich/ch_p4/examples 

genesis2:examples root# which mpicc 
/common/mpich/ch_p4/bin/mpicc 

genesis2:examples root# mpicc cpi.c 

genesis2:examples root# mpicc -o cpi cpi.o 

Run without any MPI framework: 

genesis2:examples root# ./cpi  
Process 0 on genesis2.mit.edu 
pi is approximately 3.1416009869231254, Error is 

0.0000083333333323 
wall clock time = 0.000214 



Submitting a standalone MPI job (no SGE) 
MPI needs to know which hosts to use:  We create a hosts file which simply lists the 

machine 

genesis2:~ bioteam$ more hosts_file  
node001 
node002 
Node003 
node004 

Then start the job using ‘mpirun’ 

genesis2:~ bioteam$ mpirun -machinefile hosts_file \ 
          -np 4 /common/mpich/ch_p4/examples/cpi 
Process 0 on genesis2.mit.edu 
Process 2 on node002.cluster.private 
Process 3 on node003.cluster.private 
Process 1 on node001.cluster.private 
pi is approximately 3.1416009869231249, Error is 0.0000083333333318 
wall clock time = 0.002106 



Critical Notes 
In order to have MPICH jobs work reliably, you need to compile and run 

them with the same version of MPICH.   
/common/mpich 
/common/mpich2 
/common/mpich2-64 

All user account issues must be in order for this to work. 
–  Password free ssh in particular 

If the application does not work from the command line, SGE will not 
help.  



Loose Integration with SGE 
Loose Integration 

–  Grid Engine used for: 
•  Picking when the job runs 
•  Picking where the job runs 
•  Generating the custom machine file 

–  Grid Engine does not: 
•  Launch or control the parallel job itself 
•  Track resource consumption or child processes 

Advantages of loose integration 
–  Easy to set up 
–  Can trivially support almost any parallel application technology 

Disadvantages of loose integration 
–  Grid Engine can’t track resource consumption 
–  Grid Engine must “trust” the parallel app to honor the custom hostfile 
–  Grid Engine can not kill runaway jobs 



Tight integration with SGE 
Tight Integration 

–  Grid Engine handles all aspects of parallel job operation from start to 
finish 

–  Includes spawning and controlling all parallel processes 

Tight integration advantages: 
–  Grid Engine remains in control 
–  Resource usage accurately tracked 
–  Standard commands like “qdel” will work 

•  Child tasks will not be forgotten about or left untouched 

Tight Integration disadvantages: 
–  Can be really hard to implement 
–  Makes job debugging and troubleshooting harder 
–  May be application specific 



Running an mpich job with loose SGE integration 

Step one:  Job must work without SGE. 
–  Until you can demonstrate a running job using a host file and manual start 

up, there is no point to involving SGE 

Step two:  Create a wrapper script to allow SGE to define the list of 
hosts and the number of tasks 

Step three:  Submit that wrapper script into a ‘parallel environment’ 
–  Parallel environment manages all the host list details for you. 



MPICH Wrapper for CPI 
A trivial MPICH wrapper for Grid Engine: 

#!/bin/bash 

## ---- EMBEDDED SGE ARGUMENTS ---- 
#$ -N MPI_Job 
#$ -pe mpich 4 
#$ -cwd 
#$ -S /bin/bash 
## ------------------------------------ 
MPIRUN=/common/mpich/ch_p4/bin/mpirun 
PROGRAM=/common/mpich/ch_p4/examples/cpi 
export RSHCOMMAND=/usr/bin/ssh 

echo "I got $NSLOTS slots to run on!" 
$MPIRUN -np $NSLOTS -machinefile $TMPDIR/machines $PROGRAM 



Job Execution 
Submit just like any other SGE job: 

[genesis2:~] bioteam% qsub submit_cpi  
Your job 234 ("MPI_Job") has been submitted 

Output files generated: 
[genesis2:~] bioteam% ls -l *234 
-rw-r--r--  1 bioteam  admin  185 Dec 15 20:55 MPI_Job.e234 

-rw-r--r--  1 bioteam  admin  120 Dec 15 20:55 MPI_Job.o234 

-rw-r--r--  1 bioteam  admin   52 Dec 15 20:55 MPI_Job.pe234 

-rw-r--r--  1 bioteam  admin  104 Dec 15 20:55 MPI_Job.po234 



Output 
[genesis2:~] bioteam% more MPI_Job.o234 
I got 5 slots to run on! 

pi is approximately 3.1416009869231245, Error is 
0.0000083333333314 

wall clock time = 0.001697 

[genesis2:~] bioteam% more MPI_Job.e234 
Process 0 on node006.cluster.private 

Process 1 on node006.cluster.private 

Process 4 on node004.cluster.private 
Process 2 on node013.cluster.private 

Process 3 on node013.cluster.private 



Parallel Environment Usage 

•  “qsub -pe mpich 4 ./my-mpich-job.sh” 

•  “qsub -pe mpich 4-10 ./my-mpich-job.sh” 

•  “qsub -pe lam-loose 3 ./my-lam-job.sh” 



Behind the Scenes:  Parallel Environment Config 

genesis2:~ bioteam$ qconf -sp mpich 
pe_name           mpich 

slots             512 
user_lists        NONE 

xuser_lists       NONE 

start_proc_args   /common/sge/mpi/startmpi.sh $pe_hostfile 

stop_proc_args    /common/sge/mpi/stopmpi.sh 

allocation_rule   $fill_up 

control_slaves    FALSE 

job_is_first_task TRUE 

urgency_slots     min 



Behind the scenes: MPICH 

The “startmpi.sh” script is run before job launches and 
creates custom machine file 

The user job script gets date required by ‘mpirun’ from 
environment variables: 
$NODES, $TEMPDIR/machines, etc. 

The “stopmpi.sh” script is just a placeholder 
Does not really do anything (no need yet) 



Behind the scenes: LAM-MPI 
•  Just like MPICH 

•  But 2 additions: 
–  The “lamstart.sh” script launches LAMBOOT 
–  The “lamstop.sh” script executes LAMHALT at job termination 

•  In an example configuration, lamboot is started this way: 
–  lamboot -v -ssi boot rsh -ssi rsh_agent "ssh -x 
-q" $TMPDIR/machines 



Behind the scenes: LAM-MPI 
•  A trivial LAM-MPI wrapper for Grid Engine: 

#!/bin/sh!

MPIRUN=“/common/lam/bin/mpirun”!

## ---- EMBEDDED SGE ARGUMENTS ----!
#$ -N MPI_Job!
#$ -pe lammpi 3-5!
#$ -cwd!
## ------------------------------------!
echo "I have $NSLOTS slots to run on!"!
$MPIRUN C ./mpi-program!



OpenMPI 
In absence of specific requirements, a great choice 

Works well over Gigabit Ethernet 

Trivial to achieve tight SGE integration 

Recent personal experience: 
–  Out of the box: ‘cpi.c’ on 1024 CPUs 
–  Out of the box: heavyweight genome analysis pipeline on 650 Nehalem 

cores 



Behind the scenes: OpenMPI 
OpenMPI 1.2.x natively supports automatic tight SGE integration 

–  Build from source with “--enable-sge” 
–  mpirun -np $NSLOTS /path-to-my-parallel-app 

OpenMPI PE config:  
pe_name           openmpi 
slots             4 
user_lists        NONE 
xuser_lists       NONE 
start_proc_args   /bin/true 
stop_proc_args    /bin/true 
allocation_rule   $round_robin 
control_slaves    TRUE 
job_is_first_task FALSE 
urgency_slots     min 



OpenMPI Job Script 
#!/bin/sh!

## ---- EMBEDDED SGE ARGUMENTS ----!
#$ -N MPI_Job!
#$ -pe openmpi 3-5!
#$ -cwd!
## ------------------------------------!

echo "I got $NSLOTS slots to run on!"!

mpirun -np $NSLOTS ./my-mpi-program!



Application profiling 
•  Most basic: System Monitoring 

–  ‘top’ 
–  Ganglia 

•  Apple ‘shark’ tools 

•  Deep understanding of code. 



Tuning parallel jobs 
•  Round Robin: 

–  Jobs are distributed to as many nodes as possible 
–  Good for tasks where memory may be the bottleneck 

•  Fill up: 
–  Jobs are packed onto as few nodes as possible 
–  Good for jobs where interprocess communications may be the bottleneck 

•  Single chassis 
–  “threaded” environment from earlier sessions 
–  For multi-threaded programs (BLAST) 



Thank you 


