
Cluster User Training
From Bash to parallel jobs under SGE in one terrifying hour

Christopher Dwan, Bioteam
First delivered at IICB, Kolkata, India

December 14, 2009

UNIX ESSENTIALS

Unix command line essentials
“pwd”: Print current working directory (where am I?)
“ls”: File listing
“ls –l”: Detailed file listing, including permissions
“cd”: Change directory
“chmod”: Change file permissions
“echo”: Print something to the terminal
“more”: Show contents of a text file
“pico” Text editor

“man”: Documentation on any Unix command:

Basic Unix Exercises: Making directories
What directory am I currently in?

Remora:~ cdwan$ pwd
/Users/cdwan/

Create a directory named “test_1”
Remora:~ cdwan$ mkdir test_1
Remora:~ cdwan$ ls
test_1

Change into that directory, and verify that we are there.
Remora:~ cdwan$ cd test_1
remora:test_1 cdwan$ pwd
/Users/cdwan/test_1

More basic Unix
Return to your home directory:

“cd” with no arguments

Exit the session:
“exit”

File editing.
“The best script editor” is the subject of an ongoing religious war in

technical circles

You should use the tool that does not get in your way.

“vi”: lightweight, complex, powerful, difficult to use
“emacs”: heavyweight, complex, powerful, difficult to use
“pico”: Possibly the simplest editor to use

To edit a file: “pico filename”

Hello world in ‘bash’
“Bash” is a shell scripting language.

–  It is the default scripting language that you have at the terminal.
–  I.e: You are already using it.
–  We will take this command:

remora:test_1 cdwan$ echo "hello world"
hello world

And create a wrapper script to do the same thing:

remora:test_1 cdwan$ pico hello.sh
remora:test_1 cdwan$ chmod +x hello.sh
remora:test_1 cdwan$./hello.sh
hello world

Running a set of bash commands
Using pico, create a file named “hello.sh” containing a single line:

echo "hello world"

Exit pico. Verify the contents of the file:

remora:ex_1 cdwan$ more hello.sh
echo "hello world"

Then invoke it using the ‘bash’ interpreter:

remora:ex_1 cdwan$ bash hello.sh
hello world

Hello world script
remora:test_1 cdwan$ pico hello.sh

#!/bin/bash

echo "hello world”

The “#!” line tells the system to automatically run it using bash
Ctrl-O: Save the file
Ctrl-X: Exit pico

File permissions
Files have properties:

–  Read, Write, Execute
–  Three different types of user: “owner”, “group”, “everyone”

To take a script you have written and turn it into an executable program,
run “chmod +x” on it.

remora:test_1 cdwan$ ls -l hello.sh
-rw-r--r-- 1 cdwan staff 32 Dec 14 21:56 hello.sh

remora:test_1 cdwan$ chmod +x hello.sh

remora:test_1 cdwan$ ls -l hello.sh
-rwxr-xr-x 1 cdwan staff 32 Dec 14 21:56 hello.sh

Execute the hello world script
remora:test_1 cdwan$ pico hello.sh

remora:test_1 cdwan$ chmod +x hello.sh

remora:test_1 cdwan$./hello.sh
hello world

SUBMITTING SGE SCRIPTS

Most useful SGE commands
•  qsub / qdel

–  Submit jobs & delete jobs

•  qstat & qhost
–  Status info for queues, hosts and jobs

•  qacct
–  Summary info and reports on completed job

•  qrsh
–  Get an interactive shell on a cluster node
–  Quickly run a command on a remote host

•  qmon
–  Launch the X11 GUI interface

Please	
 do	
 not	
 copy,	
 put	
 online	

or	
 redistribute	

	
 info@bioteam.net	

Interactive Sessions
To generate an interactive session, scheduled on any node:

“qlogin”

applecluster:~ cluster$ qlogin!

Your job 145 ("QLOGIN") has been submitted!
waiting for interactive job to be scheduled ...!
Your interactive job 145 has been successfully scheduled.!
Establishing /common/node/ssh_wrapper session to host node002.cluster.private ...!
The authenticity of host '[node002.cluster.private]:50726 ([192.168.2.2]:50726)'

can't be established.!
RSA key fingerprint is a7:02:43:23:b6:ee:07:a8:0f:2b:6c:25:8a:3c:93:2b.!
Are you sure you want to continue connecting (yes/no)? yes!
Warning: Permanently added '[node002.cluster.private]:50726,[192.168.2.2]:

50726' (RSA) to the list of known hosts.!
Last login: Thu Dec 3 09:55:42 2009 from portal2net.cluster.private!

node002:~ cluster$!

all.q@node002.cluster.private BIP 1/8 0.00 darwin-x86 !
 145 0.55500 QLOGIN cluster r 12/15/2009 09:15:08 !

Requesting the whole node
qlogin -pe threaded 8

all.q@node014.cluster.private BIP 8/8 0.00 darwin-x86
 146 0.55500 QLOGIN cluster r 12/15/2009 09:34:58 8

We request a parallel environent called “threaded” (note, this PE does not
exist by default in SGE – we create it in iNquiry)

We request 8 slots within that environment

Now, no other jobs will be scheduled to your node while that login is in
place.

Most basic job example
qsub –b y /bin/hostname!

You will see two new files in your home directory:
hostname.oYYY!
hostname.eYYY!

YYY is the job id provided by the queuing system.

These are the standard output and standard error files from running /bin/
hostname on one of the nodes.

Argument “-b y” indicates that this is a a compiled binary. SGE will not
try to parse the input, but merely run it.

Creating the sleeper script

#!/bin/bash

echo “hello world”

sleep 60
hostname

Then run like this:
remora:test_1 cdwan$ cp hello.sh sleeper.sh
remora:test_1 cdwan$ pico sleeper.sh
remora:test_1 cdwan$./sleeper.sh
hello world

remora.local

Submitting the sleeper script
genesis2:example bioteam$ qsub -cwd –S /bin/bash sleeper.sh
Your job 217 ("sleeper.sh") has been submitted

genesis2:example bioteam$ qstat
job-ID prior name user state submit/start at

queue slots ja-task-ID
--

 217 0.55500 sleeper.sh bioteam r 12/14/2009 12:00:46
all.q@node004.cluster.private 1

Adding arguments directly into the script
#!/bin/bash

#$ -S /bin/bash
#$ -cwd

echo "hello world”

sleep 60

hostname

Any comment that starts with “#$” is interpreted as an argument to qsub.

In case of conflict, the command line wins.

More SGE commands
•  “qstat –f”: Show all queues, even the empty ones
•  “qstat –u *”: Show jobs from all users
•  “qstat –f –u *”: Both all queues and uses

•  “qdel job_id”: Delete a particular job
•  “qdel –u cdwan”: Delete all jobs run by user cdwan

Giving your job a name
#!/bin/bash
#$ -S /bin/bash
#$ -cwd
#$ -N sleeper

echo ”Hello world”
sleep 60
hostname

genesis2:demo bioteam$ qsub sleeper.sh
Your job 222 ("sleeper") has been submitted

Resource Requirements
genesis2:demo bioteam$ qsub -l arch=solaris sleeper.sh
Your job 225 ("sleeper") has been submitted

genesis2:demo bioteam$ qstat
job-ID prior name user state
--
 225 0.00000 sleeper bioteam qw

We specify a resource requirement that cannot be met (there are no solaris machines
in the cluster)

Qstat –j 225 tells the story:

 (-l arch=solaris) cannot run at host "node008.cluster.private" because it offers only
hl:arch=darwin-ppc

Environment variables from SGE
SGE sets several variables in the script for you.

–  JOB_ID numerical ID of the job

#!/bin/bash
#$ -S /bin/bash
#$ -cwd
#$ -N sleeper

echo "My job id is " $JOB_ID
sleep 60

genesis2:demo bioteam$ more sleeper.o221
My job id is 221

Job dependencies
genesis2:demo bioteam$ qsub -N ”primary” sleeper.sh!

genesis2:demo bioteam$ qsub -hold_jid primary -N
"secondary" sleeper.sh !

Your job 224 ("secondary") has been submitted!

genesis2:demo bioteam$ qstat!
job-ID prior name user state!
---!
 223 0.55500 primary bioteam r!
 224 0.00000 secondary bioteam hqw!

Redirecting output
#!/bin/bash

#$ -S /bin/bash

#$ -cwd
#$ -o task.out
#$ -e task.err

echo "Job ID is " $JOB_ID

Task arrays
#!/bin/bash

#$ -S /bin/bash

#$ -cwd

#$ -N task_array
#$ -o task.out

#$ -e task.err

echo "Job ID is " $JOB_ID “ Task is “ $SGE_TASK_ID

Task arrays
genesis2:example_2 bioteam$ qsub -t 1-10 task.sh

Your job-array 228.1-10:1 ("task_array") has been
submitted

genesis2:example_2 bioteam$ more task.out

Job ID is 228 Task ID is 10

Job ID is 228 Task ID is 1

Job ID is 228 Task ID is 3

Job ID is 228 Task ID is 4

•  …

Perl instead of bash
My “hello world” script, using Perl instead of Bash:

remora:~ cdwan$ more hello_world.pl !
#!/usr/bin/perl!
#! –S /usr/bin/perl!

sleep(60);!
print "Hello world\n";!

Submitted to the queuing system:
qsub hello_world.pl!

PERFORMANCE TUNING /
PARALLELIZATION

Parallel Jobs
•  A parallel job runs simultaneously across multiple servers

–  Biggest SGE job I’ve heard of: Single application running across 63,000
CPU cores: TACC “Ranger” Cluster in Texas

–  Distinction with ‘batches’ of processes that include many tasks to be done
in any order

APPLICATION	

cdwan@bioteam.net	

Parallel computing 101

APPLICATION	

High	
 Performance	

CompuBng	

High	
 Throughput	

CompuBng	
 (farm)	

Batch Jobs

Copyright	
 2006,	
 The	
 BioTeam	
 	
 	
 32
	
 	
 Not	
 for	
 RedistribuBon	

hKp://bioteam.net	
 	
 	
 	
 	
 	
 	
 	

Chris	
 Dwan	
 cdwan@bioteam.net	

Private	
 Ethernet	
 Network	

“Public”	
 Ethernet	
 Network	

• Independent	
 applicaBons	
 running	
 at	
 the	
 same	
 Bme	

• Many	
 jobs	
 (batch)	

• Maximum	
 efficiency,	
 simple	
 to	
 write	

Tightly Coupled / Parallel

Copyright	
 2006,	
 The	
 BioTeam	
 	
 	
 33
	
 	
 Not	
 for	
 RedistribuBon	

hKp://bioteam.net	
 	
 	
 	
 	
 	
 	
 	

Chris	
 Dwan	
 cdwan@bioteam.net	

	
 One	
 parallel	
 applicaBon	
 running	
 over	
 the	
 enBre	
 cluster	

Private	
 Ethernet	
 Network	

“Public”	
 Ethernet	
 Network	

• One	
 job,	
 where	
 response	
 Bme	
 is	
 important.	

• Overall	
 efficiency	
 is	
 lower	

• Scalability	
 is	
 hard	

Amdahl’s Law

Maximum expected speedup for
parallelizing any task
–  Serial portion (non parallelizable)
–  Parallel portion (can be parallelized)

Additionally:
–  Cost associated with using more

machines (startup, teardown)
–  At least, scheduling. Possibly some

other factors like communication
–  Communication scales with number

of processes

Important to note:
Re-stating the problem can radically alter

the serial / parallel ratio

Network Latency
•  Latency:

–  Time to initiate communication
•  Throughput:

–  Data rate once communication is established

•  Gigabit Ethernet:
–  Latencies: ~100ms
–  Throughputs up to 80% of wire speed (800Mb/sec)
–  $10 / network port

•  Myranet / Infiniband:
–  Latencies: ~3ms
–  Throughput: 80% of wire speed
–  $800 / network port

RUNNING PARALLEL TASKS

Parallel Jobs
Many different software implementations are used to support parallel

tasks:
–  MPICH
–  LAM-MPI
–  OpenMPI
–  PVM
–  LINDA

No magic involved
–  Requires work
–  Your application must support parallel methods

Submitting a standalone MPI job
Build the code with a particular version of MPI:

genesis2:examples bioteam$ pwd
/common/mpich/ch_p4/examples

genesis2:examples root# which mpicc
/common/mpich/ch_p4/bin/mpicc

genesis2:examples root# mpicc cpi.c

genesis2:examples root# mpicc -o cpi cpi.o

Run without any MPI framework:

genesis2:examples root# ./cpi
Process 0 on genesis2.mit.edu
pi is approximately 3.1416009869231254, Error is

0.0000083333333323
wall clock time = 0.000214

Submitting a standalone MPI job (no SGE)
MPI needs to know which hosts to use: We create a hosts file which simply lists the

machine

genesis2:~ bioteam$ more hosts_file
node001
node002
Node003
node004

Then start the job using ‘mpirun’

genesis2:~ bioteam$ mpirun -machinefile hosts_file \
 -np 4 /common/mpich/ch_p4/examples/cpi
Process 0 on genesis2.mit.edu
Process 2 on node002.cluster.private
Process 3 on node003.cluster.private
Process 1 on node001.cluster.private
pi is approximately 3.1416009869231249, Error is 0.0000083333333318
wall clock time = 0.002106

Critical Notes
In order to have MPICH jobs work reliably, you need to compile and run

them with the same version of MPICH.
/common/mpich
/common/mpich2
/common/mpich2-64

All user account issues must be in order for this to work.
–  Password free ssh in particular

If the application does not work from the command line, SGE will not
help.

Loose Integration with SGE
Loose Integration

–  Grid Engine used for:
•  Picking when the job runs
•  Picking where the job runs
•  Generating the custom machine file

–  Grid Engine does not:
•  Launch or control the parallel job itself
•  Track resource consumption or child processes

Advantages of loose integration
–  Easy to set up
–  Can trivially support almost any parallel application technology

Disadvantages of loose integration
–  Grid Engine can’t track resource consumption
–  Grid Engine must “trust” the parallel app to honor the custom hostfile
–  Grid Engine can not kill runaway jobs

Tight integration with SGE
Tight Integration

–  Grid Engine handles all aspects of parallel job operation from start to
finish

–  Includes spawning and controlling all parallel processes

Tight integration advantages:
–  Grid Engine remains in control
–  Resource usage accurately tracked
–  Standard commands like “qdel” will work

•  Child tasks will not be forgotten about or left untouched

Tight Integration disadvantages:
–  Can be really hard to implement
–  Makes job debugging and troubleshooting harder
–  May be application specific

Running an mpich job with loose SGE integration

Step one: Job must work without SGE.
–  Until you can demonstrate a running job using a host file and manual start

up, there is no point to involving SGE

Step two: Create a wrapper script to allow SGE to define the list of
hosts and the number of tasks

Step three: Submit that wrapper script into a ‘parallel environment’
–  Parallel environment manages all the host list details for you.

MPICH Wrapper for CPI
A trivial MPICH wrapper for Grid Engine:

#!/bin/bash

---- EMBEDDED SGE ARGUMENTS ----
#$ -N MPI_Job
#$ -pe mpich 4
#$ -cwd
#$ -S /bin/bash

MPIRUN=/common/mpich/ch_p4/bin/mpirun
PROGRAM=/common/mpich/ch_p4/examples/cpi
export RSHCOMMAND=/usr/bin/ssh

echo "I got $NSLOTS slots to run on!"
$MPIRUN -np $NSLOTS -machinefile $TMPDIR/machines $PROGRAM

Job Execution
Submit just like any other SGE job:

[genesis2:~] bioteam% qsub submit_cpi
Your job 234 ("MPI_Job") has been submitted

Output files generated:
[genesis2:~] bioteam% ls -l *234
-rw-r--r-- 1 bioteam admin 185 Dec 15 20:55 MPI_Job.e234

-rw-r--r-- 1 bioteam admin 120 Dec 15 20:55 MPI_Job.o234

-rw-r--r-- 1 bioteam admin 52 Dec 15 20:55 MPI_Job.pe234

-rw-r--r-- 1 bioteam admin 104 Dec 15 20:55 MPI_Job.po234

Output
[genesis2:~] bioteam% more MPI_Job.o234
I got 5 slots to run on!

pi is approximately 3.1416009869231245, Error is
0.0000083333333314

wall clock time = 0.001697

[genesis2:~] bioteam% more MPI_Job.e234
Process 0 on node006.cluster.private

Process 1 on node006.cluster.private

Process 4 on node004.cluster.private
Process 2 on node013.cluster.private

Process 3 on node013.cluster.private

Parallel Environment Usage

•  “qsub -pe mpich 4 ./my-mpich-job.sh”

•  “qsub -pe mpich 4-10 ./my-mpich-job.sh”

•  “qsub -pe lam-loose 3 ./my-lam-job.sh”

Behind the Scenes: Parallel Environment Config

genesis2:~ bioteam$ qconf -sp mpich
pe_name mpich

slots 512
user_lists NONE

xuser_lists NONE

start_proc_args /common/sge/mpi/startmpi.sh $pe_hostfile

stop_proc_args /common/sge/mpi/stopmpi.sh

allocation_rule $fill_up

control_slaves FALSE

job_is_first_task TRUE

urgency_slots min

Behind the scenes: MPICH

The “startmpi.sh” script is run before job launches and
creates custom machine file

The user job script gets date required by ‘mpirun’ from
environment variables:
$NODES, $TEMPDIR/machines, etc.

The “stopmpi.sh” script is just a placeholder
Does not really do anything (no need yet)

Behind the scenes: LAM-MPI
•  Just like MPICH

•  But 2 additions:
–  The “lamstart.sh” script launches LAMBOOT
–  The “lamstop.sh” script executes LAMHALT at job termination

•  In an example configuration, lamboot is started this way:
–  lamboot -v -ssi boot rsh -ssi rsh_agent "ssh -x
-q" $TMPDIR/machines

Behind the scenes: LAM-MPI
•  A trivial LAM-MPI wrapper for Grid Engine:

#!/bin/sh!

MPIRUN=“/common/lam/bin/mpirun”!

---- EMBEDDED SGE ARGUMENTS ----!
#$ -N MPI_Job!
#$ -pe lammpi 3-5!
#$ -cwd!
------------------------------------!
echo "I have $NSLOTS slots to run on!"!
$MPIRUN C ./mpi-program!

OpenMPI
In absence of specific requirements, a great choice

Works well over Gigabit Ethernet

Trivial to achieve tight SGE integration

Recent personal experience:
–  Out of the box: ‘cpi.c’ on 1024 CPUs
–  Out of the box: heavyweight genome analysis pipeline on 650 Nehalem

cores

Behind the scenes: OpenMPI
OpenMPI 1.2.x natively supports automatic tight SGE integration

–  Build from source with “--enable-sge”
–  mpirun -np $NSLOTS /path-to-my-parallel-app

OpenMPI PE config:
pe_name openmpi
slots 4
user_lists NONE
xuser_lists NONE
start_proc_args /bin/true
stop_proc_args /bin/true
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min

OpenMPI Job Script
#!/bin/sh!

---- EMBEDDED SGE ARGUMENTS ----!
#$ -N MPI_Job!
#$ -pe openmpi 3-5!
#$ -cwd!
------------------------------------!

echo "I got $NSLOTS slots to run on!"!

mpirun -np $NSLOTS ./my-mpi-program!

Application profiling
•  Most basic: System Monitoring

–  ‘top’
–  Ganglia

•  Apple ‘shark’ tools

•  Deep understanding of code.

Tuning parallel jobs
•  Round Robin:

–  Jobs are distributed to as many nodes as possible
–  Good for tasks where memory may be the bottleneck

•  Fill up:
–  Jobs are packed onto as few nodes as possible
–  Good for jobs where interprocess communications may be the bottleneck

•  Single chassis
–  “threaded” environment from earlier sessions
–  For multi-threaded programs (BLAST)

Thank you

