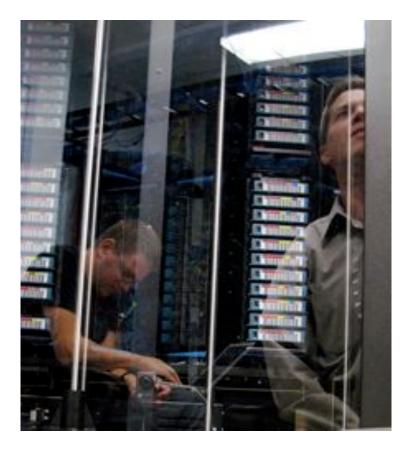


Trends and Observations, October 2009

Christopher Dwan cdwan@bioteam.net


Bioteam

Independent consulting group

- Technology / Vendor neutral
- Scientists forced to learn HPC to get our jobs done

Our Specialty

 "Bridging the gap" between science and high performance computing

Basis of my opinions

Ongoing engagements

- NASA Langley Science Directorate
- Navy Medical Research Lab, Bio-defense directorate
- Centers for Disease Control and Prevention
- MIT Dept. of Environmental Engineering

Short term engagements

- Joslin Diabetes Research Center
- Hopkins Center for Inherited Disease Research
- Several large Pharmaceuticals
- Several small biotechs

Community presence

- Supercomputing
- Bio IT world
- CHI / other small meetings
- Open source community

Major Themes

The more things change

- Massively multicore servers
- Graphics processors
- Amazon compute cloud
- Virtualization
- Noticeably better local expertise vs. 2004

The more they stay the same

- Facilities issues
- Data lifecycle management
- Workflow flexibility vs. Enterprise deployment

Massively Multicore Linux Systems

Commodity servers:

- 256 core cluster with 4TB RAM and 128TB disk fits in 16 rack units.
 - 4 chips x 4 cores = 16 cores per server
 - 32 DIMM slots x 8GB DIMMs = 256GB RAM per server
 - $4 \times 2TB = 8 TB$ internal disk

	24GB kit (8GBx3)	US \$2699.99 ADD TO BASKET
	Part #: CT3KIT102472BV1067 • DDR3 PC3- 8500 • CL=7 • Dual Ranked • Registered • ECC • DDR3-1066 • 1.5V • 1024Meg x 72 • Low Profile • more details (0 Ratings)	

Small Clusters of "Fat" nodes

Cost curve supports packing cores into a small number of nodes

– Incremental cost of chassis is higher than that of nodes.

Each node is a higher percentage of the cluster capacity

- Worthwhile to invest in redundant power supplies, etc. on the compute nodes
- Capricious reboots are more costly.

Non uniform memory / network topology

- Scheduling multi threaded tasks onto a single node becomes important
- Questions of low latency networking can be pushed onto the motherboard for jobs that don't parallelize well beyond 16 or 32 cores.
- Gb/sec networking still appears adequate for most teams

Heat / Density / Power

Graphics Processors

Think of a GPU as a 100,000 core chip with only a little bit of RAM

- Very close to having a "-target" flag for NVDIA from gcc
- Ordinary linux server with extra capability invoked in the binary
- Fits nicely in a heterogeneous compute cluster
- Also fits quietly in a lab instrument

Field Programmable Gate Arrays (FPGAs) were supposed to fill this role 5 years ago.

- To my knowledge, they still do not.

Hybrid clusters including GPU servers are becoming common

- All GPU, all the time is still somewhat academic (Harvard)
- Three customers this quarter: "stand it up, give it a dedicated queue, we'll figure it out later"

GPU processing is a commodity

Clusters are invisible

Instrument vendors routinely ship outboard compute clusters.

 Horrifying from a systems perspective

Customers buying extra clusters

 Rather than attempting integration with existing

40TB direct attached storage is also a commodity.

 Broad Inst. uses this to buy breathing room

BIOTEAM

Moore's Law Has Changed Character

Code used to get "better" simply by riding the annual increase in clock speed brought on by shrinking electronics.

- Most code has gotten much *less* efficient over time as programmers knew that increased clock speeds and memory sizes would cover their slop.

Very few examples of code that parallelizes out to 1,000s of CPUs.

- That code is already moving to GPUs

Important to revisit architectural assumptions regularly

- Moore's curse: What I used to be proud of doing is now either trivial or actually a bad idea.

Amazon Compute Cloud

Amazon's EC2 and S3 are "The Grid" as promised in the 90's.

- To my knowledge, all others are academic or vaporware
- This goes double for "private clouds"
- Semantic quibble: "Cloud" != "grid" != "cluster"

Instrument vendors, pharmaceutical companies, and government agencies are all outsourcing *intermittent*, *bursty* computation to the cloud.

Hurdles Cleared:

- Data motion (Fedex-net is up and running as of 2009)
- Security (B2B VPN on a case by case basis)
- Scaling / build out teething issues

Remaining Challenges:

- Social acceptance: Accurate blame for leaks and failures
- Utility / industrial chargeback model (Amex doesn't cut it)
- Quality of service. (Two nines is not sufficient for all use cases)

Cloud Scaling

Storage

- Bioteam was contracted to move 40TB of imaging data out of the cloud in early 2009
- Observed high-water-mark of 200TB from a single organization *into* the cloud in late 2009
- Jury is still out on the cloud as long term destination for "permanent" storage
- Still need enterprise level assurance for long term data retention and protection

Clusters

- Bioteam has moved several tools into the cloud for a variety of clients.
- "Burstable" clusters of 100s of nodes are reliable and easy
- 1000s of nodes are more challenging, but possible

Bandwidth remains a challenge

- Fedex remains a not-unreasonable solution

Virtualization (as distinct from 'cloud')

Virtualized software delivery is real

- Remote hosting (software as a service)
- VM image (software with no installer)

Server lifecycle management is real

- Old servers don't die, they become virtual
- Decouple hardware purchases from specific software tools.

Effect on compute clusters

- Have seen virtualized interactive nodes, schedulers, etc.
- Have not seen many completely virtual compute nodes
 - Caveat: May be real, I just haven't seen them in operation yet.

Local Expertise and Open Source Tools

Human resources for scientific computing in biology

- An order of magnitude better in 2009 than they were in 2004.
- Caveat: I may just be catching up
- Monster.com for "bioinformatics" yields lots of hits for real, talented people with the right experience.
- Undergraduate biology curricula are starting to include computer programming

Open source tools

 In many cases better supported and technically superior to their commercial counterparts

Open Source

BIC

Enabling Science

Even the automatic gambling machines in bars run Linux

The more things remain the same

Facilities Issues

Modern servers are power hogs and highly efficient heaters

- 2004: 1A per rack unit was a reasonable estimate for steady state power draw of a loaded system
- 2009: Vendors list 3 4A per rack unit, with "max draw" of up to 8A
- "Workgroup cluster" that can be plugged into a 20A wall outlet is down to 4 servers!
- Your data storage vendor should be able to hit 0.5PB / 42U rack for scientific data storage
- I personally saw two major facilities disasters just in October 2009

Data Lifecycle Management

Terabytes are still heavy.

- 2009: 40TB data extraction from the cloud
- Rate limiting step: Puny memory for the RAID processor in a commodity NAS box. We could manage 1Gb/sec from the internet, and 200MB/sec to local disk, but only 8MB/sec to the NAS.

Consider data's end destination when writing it the first time.

- Long term storage: Think "bytes per base pair"
- How long is "forever?" (~5 years)
- Would replicating the experiment from stored samples satisfy your requirements? (-80 freezer as a backup solution)
- The curse of Moore's Law (simply migrate to the new rather than designing for the long time.

The days of the "full backup" for the data vault are over.

- No clear winner on an archival data solution
- MAID: Massive Array of Idle Disks

Data Tsunami

2nd generation of high throughput DNA sequencers will produce substantially lower data volumes

 Vendors appear to have learned their lesson about creating compute and data storage problems

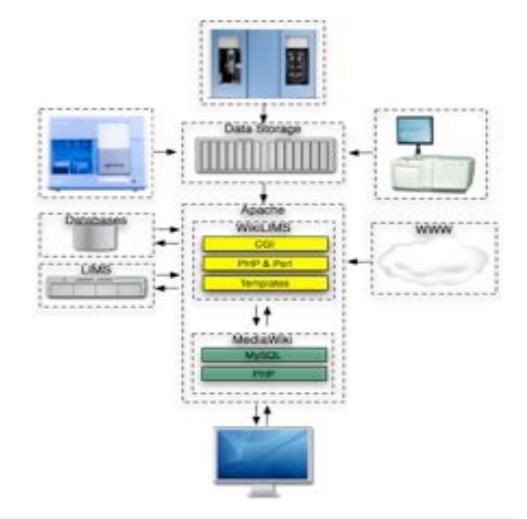
The data "bubble" has permanently deformed research pipelines.

- Researchers are used to using petabyte scale scratch space
- Once space is given, you never get it back.
- Multi-domain analyses, all vs. all

Some groups will always buy \$250k of whatever is available

The bigger they are, the harder they fall

Data storage devices are expected to last forever


- Therefore, I engineer for *when* components *will* fail rather than playing the probabilities on *if* they *might* fail.
- Reliability engineering has much to teach us

Flexibility vs. Enterprise scaling

Ongoing pressure between research and production

- Local research groups can't predict usage patterns or tool needs
- Tools developed for a research group get deployed globally, far too soon.
- Wikis, particularly semantic technologies, are powerful and flexible beyond my expectations
 - Scaling far beyond my expectations
 - Talk to Stan Gloss for more details

When my phone rings

Still several jobs per quarter:

- Extract data from Excel into a wiki or a database
- Interview and advise on computing and storage needs for new instruments
- Install / parallelize existing code
- Process management / social pathology
- Purchasing support / deployment on large clusters / storage

Fewer, I think:

- Bright physicists re-inventing computational biology
- Computer vendors re-inventing computational biology
- Software startups accelerating BLAST

New and vaguely scary:

- Mature vendors from other industries (finance, video, etc) wanting "in"
- Highly secure (military) / federally regulated clients.

Major Themes

The more things change

- Massively multicore servers
- Graphics processors
- Amazon Compute Cloud
- Virtualization
- Noticeably better local expertise vs. 2004

The more they stay the same

- Facilities issues
- Data Lifecycle Management
- Workflow flexibility vs. Enterprise deployment
- Basic Consulting