Data Management & Storage for NGS

2009 Pre-Conference Workshop

Chris Dagdigian

J L L

7 200031

1

100

-

BioTeam Inc.


Independent Consulting Shop: Vendor/technology agnostic

Staffed by:

 Scientists forced to learn High Performance IT to conduct research

Our specialty:

Bridging the gap between Science & IT

Setting the stage

- Data Awareness
- Data Movement
- Data Management
- Storage & Storage Planning
- Storage Requirements for NGS
- Putting it all together ...

The Stakes

180+ TB stored on lab bench The life science "data tsunami" is no joke.

Data Awareness

- First principals:
 - Understand chemistry changes faster than IT
 - Understand the data you will produce
 - Understand the data you will keep
 - Understand how the data will move
- Second principals:
 - One instrument or many?
 - One vendor or many?
 - One lab/core or many?

Data You Produce

- Important to understand data sizes and types on an instrument-by-instrument basis
 - How many instrument runs per day/week?
 - What IT resources required for each basecall made?
- Will have a significant effect on storage performance, efficiency & utilization
- Where it matters:
 - Big files or small files?
 - Hundreds, thousands or millions of files?
 - Does it compress well?
 - Does it deduplicate well?

Data You Produce

- Cliché NGS example
 - Raw instrument data
 - Massive image file(s)
 - Intermediate pipeline data
 - Raw data processed into more usable form(s)
 - Derived data
 - Results (basecalls & alignments)
 - Wiki's, LIMS & other downstream tools

Data You Will Keep

- Instruments producing terabytes/run are the norm, not the exception
- Data triage is real and here to stay
 - Triage is the norm, not the exception in 2009
 - Sometimes it is cheaper to repeat experiment than store all digital data forever
- Must decide what data types are kept
 - And for how long …
- Raw data ⇒ Result data
 - Can involve 100x reduction in data size

General Example - Data Triage

Raw Instrument Data

- Keep only long enough to verify that the experiment worked (7-10 days for QC)
- Intermediate Data
 - Medium to long term storage (1year to forever)
 - Tracked via Wiki or simple LIMS
 - Can be used for re-analysis
 - Especially if vendor updates algorithms
- Result Data
 - Keep forever

Applying the example ...

- Raw Instrument Data
 - Instrument-attached local RAID
 - Cheap NAS device
 - Probably not backed up or replicated
- Intermediate Data
 - Almost certainly network attached
 - Big, fast & safe storage
 - Big for flexibility & multiple instruments
 - Fast for data analysis & re-analysis
 - Safe because it is important data & expensive to recreate
- Result Data
 - Very safe & secure
 - Often enterprise SAN or RDBMS
 - Enterprise backup methods

NGS Vendors don't give great advice

- Skepticism is appropriate when dealing with NGS sales organizations
 - Essential to perform your own diligence
- Common issues:
 - Vendors often assume that you will use only their products; interoperability & shared IT solutions are not their concern
 - May lowball the true cost of IT and storage required if it will help make a sale

Data Movement

Facts

- Data captured does not stay with the instrument
- Often moving to multiple locations
- Terabyte volumes of data could be involved
- Multi-terabyte data transit across networks is rarely trivial no matter how advanced the IT organization
- Campus network upgrade efforts may or may not extend all the way to the benchtop ...

Data Movement - Personal Story

One of my favorite '09 consulting projects ...

Move 20TB scientific data out of Amazon S3 storage cloud

What we experienced:

- Significant human effort to swap/transport disks
- Wrote custom DB and scripts to verify all files each time they moved
 - Avg. 22MB/sec download from internet
 - Avg. 60MB/sec server to portable SATA array
 - Avg. 11MB/sec portable SATA to portable NAS array
- At 11MB/sec, moving 20TB is a matter of weeks
- Forgot to account for MD5 checksum calculation times

Result:

 Lesson Learned: data movement & handling took 5x longer than data acquisition

Data Movement: Recommendations

- Network & network design matters
- Gigabit Ethernet has been a commodity for years
 - Don't settle for anything less
- 10 Gigabit Ethernet is reasonably priced in 2009
 - We still mostly use this for connecting storage devices to network switches
 - Also for datacenter to lab or remote building links
 - 10GbE to desktop or bench top not necessary
 - 10GbE to nearby network closet may be
- Portable disk enclosures might be appropriate
 - Remember to account for time needed for copying and checksum activities
 - Safe & secure storage is important

Data Movement: Recommendations

- Don't bet your experiment on a 100% perfect network
 - Instruments writing to remote storage can be risky
 - Some may crash if access is interrupted for any reason
 - Stage to local disk, then copy across the network
- Network focus areas:
 - 1. Instrument to local capture storage
 - 2. Capture device to shared storage
 - 3. Shared storage to HPC resource(s)
 - 4. Shared storage to desktop
 - 5. Shared storage to backup/replication

Data Management

- Very important
 - Especially if multiple IT & storage systems involved
- There is no universal solution
 - Too many variables in protocol, data & research flows
- We have seen many different methods adopted
 - LIMS, Wiki, Spreadsheets, etc.
 - All have pros and cons
- Choosing
 - Flexibility is key
 - Chemistry or SOP might change faster than a typical LIMS design lifecycle can handle
 - All solutions are useless if unused

Storage Requirements for NGS

What features do we actually need?

"Must Have"

- High capacity & scaling headroom
- Variable file types & access patterns
- Multi-protocol access options
- Concurrent read/write access

"Nice to have"

- Single-namespace scaling
 - No more "/data1", "/data2" buckets …
 - Horrible cross mounts, bad efficiency
- Low Operational Burden
- Appropriate Pricing*
- "A la cart" feature and upgrade options

Capacity

- Chemistry/instruments improving faster than our IT infrastructure
 - Flexibility is essential to deal with this
- If we don't address capacity needs:
 - Expect to see commodity NAS boxes crammed into lab benches and telco closets
 - Expect hassles induced by island of data
 - Backup issues (if they get backed up at all)
 - ... and lots of USB drives on office shelves ...

Remember The Stakes

BIOTEAM Enabling Science 180+ TB stored on lab bench The life science "data tsunami" is no joke.

File Types & Access Patterns

 Many storage products are optimized for particular use cases and file types

Problem

- Life Science & NGS can require them all:
 - Many small files vs. fewer large files
 - Text vs. Binary data
 - Sequential access vs. random access
 - Concurrent reads against large files

Multi-Protocol Is Essential

- The overwhelming researcher requirement is for shared access to common filesystems
 - Especially true for next-gen sequencing
 - Lab instrument, cluster nodes & desktop workstations all need access the same data
 - This enables automation and frees up human time
- Shared storage in a SAN world is non-trivial
- Storage Area Networks (SANs) are not the best storage platform for discovery research environments

Storage Protocol Requirements

NFS

- Standard method for file sharing between Unix hosts
- CIFS/SMB
 - Desktop access
 - Ideally with authentication and ACLs coming from Active Directory or LDAP
- FTP/HTTP
 - Sharing data among collaborators

Concurrent Storage Access

- Ideally we want read/write access to files from
 - Lab instruments
 - HPC / Cluster systems
 - Researcher desktops
- If we don't have this
 - Lots of time & core network bandwidth consumed by data movement
 - Large & possibly redundant data across multiple islands
 - Duplicated data over islands of storage
 - Harder to secure, harder to back up (if at all ...)
 - Large NAS arrays start showing up under desks and in nearby telco closets

Data Drift: Real Example

Non-scalable storage islands add complexity

Example:

- Volume "Caspian" hosted on server "Odin"
- "Odin" replaced by "Thor"
- "Caspian" migrated to "Asgard"
- Relocated to "/massive/"

Resulted in file paths that look like this: /massive/Asgard/Caspian/blastdb /massive/Asgard/old_stuff/Caspian/blastdb /massive/Asgard/can-be-deleted/do-not-delete...

Single-namespace is valuable

000	🛄 mass	ive	Θ
		٩	
 DEVICES Macintosh HD iDisk SHARED PLACES Desktop dag Downloads Applications Documents Movies 	Name Asgard Asgard Asgard Name xen-support CentOS-5.2-x86_6	Tod Aug Yes Tod	e Modified lay, 9:27 AM 2 20, 2008, 5:28 PM terday, 12:28 PM lay, 9:31 AM terday, 12:29 PM
Pictures	Y ())∢⊳
X	5 items, 82.43 T	B available	1.

Things To Think About

An attempt at some practical advice ...

Storage Landscape

- Storage is a commodity in 2009
- Cheap storage is easy
- Big storage getting easier every day
- Big, cheap & SAFE is much harder ...
- Traditional backup methods may no longer apply
 - Or even be possible ...

Storage Landscape

Still see extreme price ranges
 Raw cost of 1,000 Terabytes (1PB):
 \$125,000 to \$4,000,000 USD

Poor product choices exist in all price ranges

Poor Choice Examples

- On the low end:
 - Use of RAID5 (unacceptable in 2009)
 - Too many hardware shortcuts result in unacceptable reliability trade-offs

Poor Choice Examples

- And with high end products:
 - Feature bias towards corporate computing, not research computing - pay for many things you won't be using
 - Unacceptable hidden limitations (size or speed)
 - Personal example:
 - \$800,000 70TB (raw) Enterprise NAS Product
 - ... can't create a NFS volume larger than 10TB
 - ... can't dedupe volumes larger than 3-4 TB

One slide on RAID 5

- I was a RAID 5 bigot for many years
 - Perfect for life science due to our heavy read bias
 - Small write penalty for parity operation no big deal

RAID 5 is no longer acceptable

- Mostly due to drive sizes (1TB+), array sizes and rebuild time
- In the time it takes to rebuild an array after a disk failure there is a non-trivial chance that a 2nd failure will occur, resulting in total data loss

In 2009

- Only consider products that offer RAID 6 or other "double parity" protection methods
- Even RAID 6 is a stopgap measure ...

Research vs. Enterprise Storage

- Many organizations have invested heavily in centralized enterprise storage platforms
 - Natural question: Why don't we just add disk to our existing enterprise solution?
 - This may or may not be a good idea
 - NGS capacity needs can easily exceed existing scaling limits on installed systems
 - Expensive to grow/expand these systems
 - Potential to overwhelm existing backup solution
 - NGS pipelines hammering storage can affect other production users and applications

Research vs. Enterprise Storage

- Monolithic central storage is not the answer
- There are valid reasons for distinguishing between enterprise storage and research storage
- Most organizations we see do not attempt to integrate NGS process data into the core enterprise storage platform
 - Separate out by required features and scaling needs

Putting it all together ...

Remember this slide ?

- First principal:
 - Understand the data you will produce
 - Understand the data you will keep
 - Understand how the data will move
- Second principal:
 - One instrument or many?
 - One vendor or many?
 - One lab/core or many?

Putting it all together

- Data Awareness
 - What data will you produce, keep & move?
 - Size, frequency & data types involved

Scope Awareness

- Are you supporting one, few or many instruments?
- Single lab, small core or entire campus?

Flow Awareness

- Understand how the data moves through full lifecycle
 - Capture, QC, Processing, Analysis, Archive, etc.
 - What people & systems need to access data?
 - Can my networks handle terabyte transit issues?

Putting it all together, cont.

- Data Management
 - What files & data need to be tracked?
 - ... and by what method
 - LIMS, WIKI, Excel, Dir Structure, etc.
- Data Integrity
 - Backup, replicate or recreate?

Example: Point solution for NGS

Self-contained lab-local cluster & storage for Illumina

Example: Small core shared IT

100 Terabyte storage system and 10 node / 40 CPU core Linux Cluster supporting multiple NGS instruments

Example: Large Core Facility

Matthew will discuss this in detail during the third talk...

End;

Thanks!

Lots more detail coming in next presentations

- Comments/feedback:
 - chris@bioteam.net

