Grid Engine & Amazon EC2

2009 Sun HPC Workshop

Chris Dagdigian BioTeam Inc.

JUH

1 - 1 - 1 - ----

_ _ _ _ _

-

a

3

Utility Computing For Cynics

- Doubt and cynicism are totally appropriate
- Personally burned by 90's era "OMG!! GRID Computing" Hype

In 2009 trying hard never to use the word "*cloud*" in any serious technical conversation. Vocabulary matters.

Utility Computing For Cynics

• Understand My Bias:

- Speaking of "utility computing" as it resonates with *infrastructure* people
- My building blocks are systems, pipelines & workflows, not APIs, software stacks or services
- Goal: Replicate, duplicate, improve or relocate complex systems

BioTeam Inc.

- Independent Consulting Shop: Vendor/technology agnostic
 Distributed entity - no physical office
- Staffed by:
 - Scientists forced to learn
 High Performance IT to conduct research
 - Many years of industry & academic experience
- Our specialty: Bridging the gap between Science & IT

Our Use Of AWS Today

- Running Our Business
 Development, Prototyping & CDN
 - Effective resource for tech-centric firms
- Grid Training Practice
 - Self-organizing Grid Engine clusters in EC2
 - Students get root on their own cluster
- Proof Of Concept Projects
 - For UnivaUD UniCluster on EC2 experiment
 - For Sun SDM 'spare pool' servers from EC2
- Directed Efforts on AWS

ISV software ports, Pharma clients, etc.

Favorite AWS Project This Year

Special project:

- 20 TB bulk data export project from Amazon S3
- Our client generated the data on EC2
- Data had to be delivered to secretive recipient on physical 5TB NAS devices
- Amazon S3 Export had not launched yet
- We eventually moved 2TB/day from S3 (!)

Lets Be Honest

- Not rocket science
- Fast becoming accepted and mainstream
- Easy to understand the pros & cons

] 🖀 Manage Accounts Christag 🛟 Synchronize Folders Preferences						
Remote View Sync Folder Transfer						
/		🗈 🔛 🧾	\$			
File Name	File Size(KB)	Upload Time	V 🖽			
Hedeby	0	06/26/2008 04:48 PM				
PUBLIC_UniCluster-EC2	0	06/16/2008 00:50 AM	1			
DunivaUD_demo_images	0	06/11/2008 07:32 PM				
SGEdemo_images	0	05/14/2008 11:40 AN	1			
ednesdaytraining	0	04/15/2008 11:31 PM				
chrodinger	0	04/15/2008 08:24 PM				
Calatest-training-ami	0	04/15/2008 00:32 AN	1			
Ctrainingfiles	0	04/14/2008 01:06 PM				
			S3Fox S			

Your Instances						
0	0 Ø					
Owner	Instance ID	AMI	State	Public DNS		
6099714411	i-b9a263d0	ami-1d709574	running	ec2-72-44		
6099714411	i-b8a263d1	ami-1d709574	running	ec2-67-202		
6099714411	i-bba263d2	ami-1d709574	running	ec2-67-202		
6099714411	i-baa263d3	ami-1d709574	running	ec2-72-44		
	Owner 6099714411 6099714411 6099714411	0 0 0	Owner Instance ID AMI 6099714411 i-b9a263d0 ami-1d709574 6099714411 i-b8a263d1 ami-1d709574 6099714411 i-bba263d2 ami-1d709574	Owner Instance ID AMI State 6099714411 i-b9a263d0 ami-1d709574 running 6099714411 i-b8a263d1 ami-1d709574 running 6099714411 i-bba263d2 ami-1d709574 running		

While we are being honest ...

Amazon is the cloud

Lead time measured in year(s)

Everyone else playing catch-up

- Replicating things AWS has done for years
- ... while AWS pushes out new product and continues to define the market

These are not viable EC2 alternatives:

- Flashy vendor press announcements
- Your university thesis project

The real EC2 action ...

AWS is just infrastructure

 The cool stuff comes from people doing clever things with the base foundation technologies

Companies I watch:

- UnivaUD
- Rightscale
- CycleComputing

HPC & AWS: Whole new world

- For cluster people some radical changes
 Years spent tuning systems for shared access
 - Utility model offers *dedicated* resources
 - EC2 not architected for our needs
 - Best practices & reference architectures will change

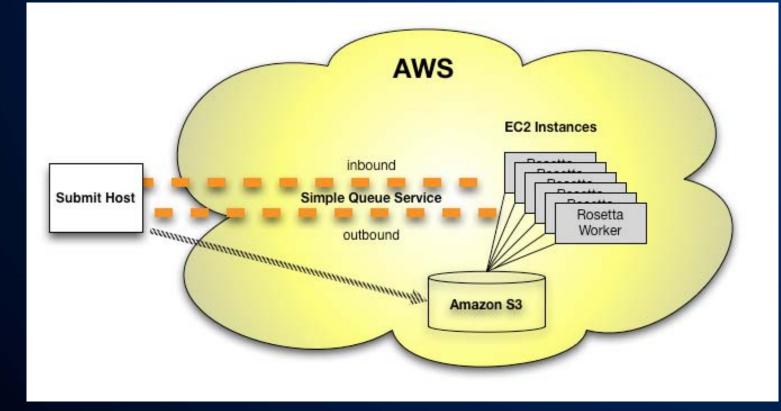
Current State: Transition Period

- Still hard to achieve seamless integration with local clusters & remote utility clouds
- Most people are moving entire workflows into the cloud rather than linking grids
- Data movement & network speeds are the issue

The Obvious Question

Why use Grid Engine at all?

Why use Grid Engine at all?


- Methods and best practices for workflow and workloads already exist within AWS
 - Why do something different?

Answer:

- For the non-trivial use cases
- When re-architecting does not make sense
- For hybrid clusters
- For 'cloud bursting' (ugh..)

Protein Engineering the Amazon way

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

Protein Engineering the Amazon way

- Inbound/Outbound SQS queues
- Job specification in JSON format
- Data for each work unit in S3 buckets
- Custom EC2 AMI
- Workers pull from S3, push back when finished
 - Job provenance/metadata stored in SimpleDB
 - Independent work units allow dynamic allocation of Worker instances

So you still want SGE in "the cloud? My \$.02

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

Deployment Options

- 100% self-contained cluster-in-the-cloud
- Hybrid system ("cloud bursting")
- Virtual Private Cloud

Self Contained SGE on AWS

- In a nutshell:
 - Amazon instance AMI's capable of booting and self-organizing into fully operational Grid Engine systems

My use case for this ...

Uses SGE; produces 1TB/day

Ilumina "next-generation" DNA Sequencing instrument 2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

If you don't solve the cold storage problem ...

180+ TB stored on lab bench The life science "data tsunami" is no joke.

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

Use Case

- Lab instrument produces 1TB/day
- SGE integral in raw data analysis
- 1TB distilled down to "few GB" in final form
- Storing the raw data is problematic
 - Many people decide to toss it
 - Cheaper to repeat the experiment if needed
 - Storage is cheap, but ...
 - Big, long-term "safe" storage is not cheap

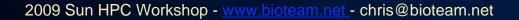
The idea ...

- Initial analysis done onsite with local cluster
- Smaller "derived" data kept local
- Raw data copied to 1TB SATA disks
- FedExed to Amazon for S3 Ingest
- Key point: 1-way data movement
- Amazon provides geo-redundant bulk store
- If we ever need to reanalyze the data ...
- Bring data back inhouse? Hell no!
 - Fire up our self-organizing SGE cluster in the cloud and (re)manipulate the data in-situ

Hybrid methods

aka "cloud bursting"

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net


Hybrid SGE/Cloud Systems

- Central idea
 - Persistent local qmaster and other local infrastructure elements
 - Probably local compute resources as well
 - Fire up SGE compute nodes within EC2 as needed
 - Bind them to your local cluster
 - Move "appropriate" work into EC2 nodes

Hybrid SGE/Cloud Systems

- Univa UniCluster does this today
- Univa UniCloud does this today
- Sun HPC stack seems able to do this using SDM and the EC2 adapter
 - For Linux & OpenSolaris
- Rolling your own
 - Not that hard to do
 - Grid Engine can do this with SDM & EC2 adaptor

aka "grab your BS shovel ..."

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

- Cloud infrastructure in your own datacenter(s)
 - May or may not 'bridge' out to other utility computing service providers
- Claim: "All of the benefits of cloud computing right in your datacenter! Free unicorns & kittens too!"
- *Everybody* is trying to play in this space
 Just like the 90's "Grid Computing" hype
 - Similar potential for utter failure to deliver on promises made

- My only recommendation is to perform your due diligence carefully
- If you drill down into some of these offerings you may find:
 - Wholesale replacement of legacy IT gear required
 - Showcase demo systems that only really do one thing
 - Reference sites that receive significant financial, implementation and engineering assistance that "regular" customers will not receive

- Calming down now ...
- Fact is
 - Lots of data on where and when utility computing can make sense as a point solution for particular problems
 - Very little data on suitability as a full-on internal IT platform
- Univa's UniCloud EDA presentation yesterday was interesting and compelling
 - Use of Xen VM migration was pretty cool
 - Kudos for presenting benchmark data

Amazon VPC Announcement

- New product in private beta: Amazon VPC
- Using "Virtual Private Cloud" term as well
- What Amazon VPC does
 - Direct VPN tunnel to AWS
 - You control subnets and IP addressing
 - Your own firewalls/security gear can be used

Amazon VPC Announcement

Why this matters:

- EC2 addressing, NAT and internal vs. external hostnames are a massive pain if you have to link to your own systems or infrastructure
- Most people already know this and already use software VPNs (Sun SDM, Univa, etc.)

And that leads me to ...

An attempt at some practical advice

2009 Sun HPC Workshop - www.bioteam.net - chris@bioteam.net

SGE & AWS: Pain Points

- EC2 (compute), S3 & EBS (storage) are not that hard to deal with. Really.
- The awkward bits usually involve networking:
 - Nodes do not know their public IP address
 - DNS and hostnames resolve only within AWS network
 - No guarantee your EC2 nodes will even be on the same subnet
 - Tough for MPI ...
- This is why so many people use VPN technologies when building cloud-resident systems

SGE autodeploy in EC2

- Single AMI server image (CentOS 5)
- On boot
 - Must be able to learn all hostnames associated with instance reservation
 - Perl Net::Amazon::EC2, etc.
 - Must be able to elect who is 'master' and who is 'worker'
 - Query reservation hostnames; Sort alphabetically
 - 1st on list is 'master', all others are 'workers'

SGE autodeploy in EC2

- If "master"
 - Configure /etc/exports & start NFS
 - NFS for easy data sharing, not Grid Engine
 - Configure 'dsh' for passwordless SSH to nodes
- If "worker"
 - Query reservation, learn master hostname
 - Populate \$SGE_ROOT/\$SGE_CELL/act_qmaster
 - Create /etc/fstab entry for NFS mount of master
- Then
 - Wait ...

SGE autodeploy in EC2

- Why wait?
 - No guarantee that EC2 systems will be provisioned and booted in any particular order
 - Can't assume our "master" will be up before our "workers"
- So
 - All systems create necessary files and then wait
 - First root login to 'master' node kicks off a finishing script
 - NFS client & server start
 - Template-driven SGE auto-installation
- If that is not acceptable
 - Easy enough to solve with a script that runs on the elected master
 - When all hosts in reservation instance are 'alive', trigger final cluster assembly steps

SGE with Sun SDM on EC2

- Specifically seen in my early SDM/SGE experiments:
 - Java SDM code really wants to bind to the public IP
 - SDM will break on EC2 when nodes don't know their publicly reachable IP
 - Solution:
 - Query reservation, learn public IP
 - Via 'ifconfig alias' or similar, add this to your EC2 hosts and let SDM bind here

And finally

2009 Sun HPC Workshop - <u>www.bioteam.net</u> - chris@bioteam.net

Cloud Sobriety

McKinsey presentation "<u>Clearing the Air on Cloud</u> <u>Computing</u>" is a must-read

- Tries to deflate the hype a bit
- James Hamilton has a nice reaction:
 - http://perspectives.mvdirona.com/

Both conclude:

- IT staff needs to understand "the cloud"
- Critical to quantify your own internal costs
- Do your own due diligence

End;

Thanks!

Comments/feedback:

chris@bioteam.net

