Utility Computing For Cynics

2009 Amazon NYC Start-Up Tour

Chris Dagdigian BioTeam Inc.

1 -----

1 - 2 ----

1

3

Topics for Today Who we are: Why we agreed to speak

JUN

AT-HU

1 - 7 ----

a

Why we use AWS: How we came to drink the Kool-aid

Pharma Example: Protein Docking on AWS

BioTeam Inc.

- Independent Consulting Shop: Vendor/technology agnostic
 Distributed entity - no physical office
- Staffed by:
 - Scientists forced to learn
 High Performance IT to conduct research
 - Many years of industry & academic experience
- Our specialty: Bridging the gap between Science & IT

Setting The Stage

 Burned by "OMG!! GRID Computing" Hype In 2009 will try hard never to use the word "*cloud*" in any serious technical conversation. Vocabulary matters.

• Understand My Bias:

- Speaking of "utility computing" as it resonates with *infrastructure* people
- My building blocks are servers or groups of systems, not software stacks, developer APIs or commercial products
- Goal: Replicate, duplicate, improve or relocate complex systems

Lets Be Honest

- Not rocket science
- Fast becoming accepted and mainstream
- Easy to understand the pros & cons

Kanage Accounts Chrisdag Synchronize Folders Preferences Remote View Transfer View Sync Folder Transfer							
1	-	È 🗳 🦄	2 🔇				
File Name	File Size(KB)	Upload Time	▼ 🖽				
Hedeby	0	06/26/2008 04:48 PM	N				
DUBLIC_UniCluster-EC2	0	06/16/2008 00:50 A	M				
🚞 UnivaUD_demo_images	0	06/11/2008 07:32 PM	N				
SGEdemo_images	0	05/14/2008 11:40 A	M				
linesdaytraining	0	04/15/2008 11:31 PM	N				
Schrodinger	0	04/15/2008 08:24 PM	N				
🚞 latest-training-ami	0	04/15/2008 00:32 A	м				
trainingfiles	0	04/14/2008 01:06 PM	N				
			S3Fox S				

Your Instances							
0	0	0 🥝					
Reservatio	Owner	Instance ID	AMI	State	Public DNS		
r-cff40aa6	6099714411	i-b9a263d0	ami-1d709574	running	ec2-72-44-		
r-cff40aa6	6099714411	i-b8a263d1	ami-1d709574	running	ec2-67-202		
r-cff40aa6	6099714411	i-bba263d2	ami-1d709574	running	ec2-67-202		
r-cff40aa6	6099714411	i-baa263d3	ami-1d709574	running	ec2-72-44-		

Tipping Point: Hype to Reality

2007: Individual staff experimentation all year
Including MPI applications (mpiblast)

• Q1 2008:

- Realized that every single BioTeam consultant had *independently* used AWS to solve a customer facing problem
- No mandate or central planning, it just happened organically

BioTeam AWS Use Today

- Running Our Business
 - Development, Prototyping & CDN
 - Effective resource for tech-centric firms
- Grid Training Practice
 - Self-organizing Grid Engine clusters in EC2
 - Students get root on their own cluster
- Proof Of Concept Projects
 - UnivaUD UniCluster on EC2
 - Sun SDM 'spare pool' servers from EC2
- Directed Efforts on AWS

ISV software ports, Pharma clients, etc.

HPC & AWS: Whole new world

- For cluster people some radical changes
 Years spent tuning systems for shared access
 - Utility model offers *dedicated* resources
 - EC2 not architected for our needs
 - Best practices & reference architectures will change

Current State: Transition Period

- Still hard to achieve seamless integration with local clusters & remote utility clouds
- Most people are moving entire workflows into the cloud rather than linking grids
- Some work being done on 'transfer queues'

Real World Example

Protein Engineering on Amazon AWS

Protein Engineering with AWS

- Pfizer Biotherapeutics & Bioinnovation Center
 - Giles Day, Pfizer
 - Adam Kraut, BioTeam

Problem:

- Antibody models can be created in a few hours on a standard workstation
- Full-atom refinement of each model using Rosetta++ requires 1000 CPU hours
- 2-3 months required *per-model* on existing Pfizer research cluster
- Cluster subject to unpredictable loads

Protein Engineering with AWS

1000 CPU Hour Antibody Refinement Problem
 Using <u>Rosetta++</u> (Davd Baker, Uwash)

Huge Opportunity for Pfizer:

 Deliver antibody model refinement results in one day rather than 2-3 months

Ideal AWS Candidate:

- CPU bound
- Low data I/O requirements
- Free up cluster for I/O bound workloads

Protein Engineering with AWS

- Borrows heavily from RightScale & AWS published best practices
- Inbound/Outbound SQS queues
- Job specification in JSON format
- Data for each work unit in S3 buckets
 - Custom EC2 AMI
- Workers pull from S3, push back when finished
 - Job provenance/metadata stored in SimpleDB
- Independent work units allow dynamic allocation of Worker instances

Looking Ahead

My \$.02

Utility Computing Pet Peeve Security

Don't want to belittle security concerns:

- But whiff of hypocrisy is in the air ...
 - Is your staff *really* concerned or just protecting turf?
 - It is funny to see people demanding security measures that they don't practice internally across their own infrastructure

Utility Computing Pet Peeve

Security

My take:

- Amazon, Google & Microsoft probably have better internal operating controls than you do
- All of them are happy to talk as deeply as you like about all issues relating to security
- Do your own due diligence & don't let politics or IT empire issues cloud decision making

State of Amazon AWS

New features are being rolled out fast and furious But ...

- EC2 nodes still poor on disk IO operations
- EBS service can use some enhancements
 - Many readers, one-writer on EBS volumes would be fantastic
- Poor support for latency-sensitive things and workflows that prefer tight network topologies

This matters because:

- Compute power is easy to acquire
- Life science tends to be IO bound
- Life science is currently being buried in data

Bulk Data Ingest/Export

- How do I load 1TB/day into AWS?
 - <u>AWS ImportExport Service</u> still "beta",
 - No Export yet
 - Very excited about this though
- My field is looking for answers
 - Need "cheap and deep" store(s)
 - Currently buried by lab instruments that produce TB/day volumes
 - Next-Gen DNA Sequencing
 - . 3D Ultrasound & other imaging
 - Confocal microscopy
 - Etc.

Bulk Data Ingest/Export

Big Scary Concern:

- BioTeam asked yesterday to help move 30TB from Amazon S3 onto physical media for client delivery
- We put a server 1 hop away from a major Boston internet backbone, started transfers ...
- Best S3 download speed so far: 30 MB/sec sustained, bursting to 50 MB/sec Possibly not good enough for terabyte scale data...

My Fear:

- Amazon may be the only practical supplier of bulk import/export services
- Unless you are big enough to peer directly
- Ever priced out GbE internet connectivity? Whoa ...

If ingest problem can be solved ...

- I think there may be petabytes of life science data that would flock to utility storage services
 - Public and private data stores
 - Mass amount of grant funded study data
 - Archive store, HSM target and DR store
 - "Downloader Pays" model is compelling for people required to share large data sets

Terabyte Wet Lab Instrument

Cautionary Tale: 180TB kept on desk

The life science "data tsunami" is no joke

Next-Gen & Potential AWS use

What this would mean:

- Primary analysis onsite; data moved into remote utility storage service after passing QC tests
- Data would rarely (if ever) move back
- Need to reprocess or rerun?
 - Spin up "cloud" servers and re-analyze in situ
 - Terabyte data transit not required

Summary:

- Lifesci data; 1-way transit into the cloud
- Archive store or public/private repository
- Any re-study or reanalysis primarily done in situ
- Downside: replicating pipelines & workflows remotely
- Careful attention must be paid to costs

Cloud Sobriety

McKinsey presentation "<u>Clearing the Air on Cloud</u> <u>Computing</u>" is a must-read

- Tries to deflate the hype a bit
- James Hamilton has a nice reaction:
 - http://perspectives.mvdirona.com/

Both conclude:

- IT staff needs to understand "the cloud"
- Critical to quantify your own internal costs
- Do your own due diligence

End;

Thanks!

Comments/feedback:

chris@bioteam.net

