

Plenary Keynote

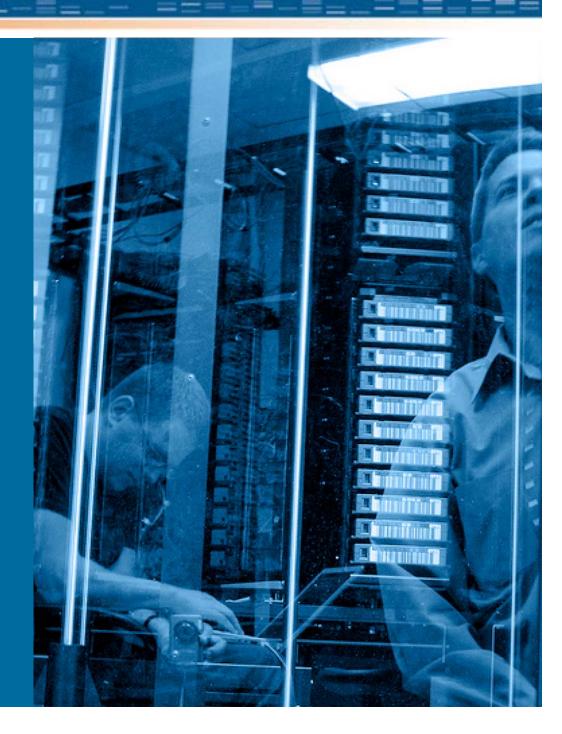
Chris Dagdigian Bio-IT World CONFERENCE & EXPO '09

Kicking Things Off

- Honored to be here!
- Backstory:
 - Consider this an evolved form of the "Trends from the Trenches" talks from prior years
- Conference tracks look great
 - Maps well to what we've seen out in the field
- Housekeeping note:
 - Check http://blog.bioteam.net for the latest version of talk slides

BioTeam Inc.

Independent Consulting Shop


Vendor/technology agnostic

Staffed by:

- Scientists forced to learn High Performance IT
- Many years of industry & academic experience

Our specialty:

 Bridging the gap between Science & IT

How I Got Here

Recipe for current career arc:

- Find people smarter than myself
- Watch what they do
- Try to understand the '*why*'
- Shamelessly copy them

Partial list of Bio-IT role models:

- James Cuff, Harvard FAS
- Tim Cutts, Welcome Trust Sanger Inst.
- Matthew Trunnel, Broad Institute
- Joe Landman, Scalable Informatics
- Chris Smith, Platform Computing
- Dan Templeton, Sun Microsystems
- Stu Jackson, Rosetta/Merck
- ... and many more ...

Some Reservations ...

I'm uncomfortable giving this particular address:

- My role models did not get to where they are today via punditry & plenary addresses
- Most don't have the time to talk in public about their latest efforts

Trying really hard to avoid being seen as an industry figure or talking head

> Results more important than words

Topics for Today

Old News

• Once trendy, now mainstream

Currently Exciting

- Overhyped but still useful
- Soon To Be Exciting
 - What we are watching

Already Mainstream

Virtualization & Bio-IT Storage "Tsunami"

Still the lowest hanging fruit in most shops

- Tremendous benefits for
 - Operators, end-users, environment & budgets
- Tipping point for me was
 - Live migration of running VMs without requiring a proprietary file system underneath

Seen in 2009:

- Campus "Virtual Colocation Service"
 - Deployed when HVAC/power hit facility limits
 - Available campus-wide to all researchers & groups
 - Built with VMWare & NetApp on Sun hardware
 - Aggressive thin-provisioning & content optimization
- Truly significant payoff:
 - ~400 servers currently virtualized
 - Large # of physical servers retired & shut down
 - Storage savings from de-dup, compression & thin provisioning
 - Significant electrical & HVAC savings
 - Full delegation of administrative control to owners

Another benefit for Research IT shops:

- Lets scientists design, deploy and manage apps and services that are not part of the "enterprise" portfolio
- Solves a common problem in large IT environments:
 - Scientists routinely building web apps and services to satisfy individual or workgroup level requirements
 - Often need administrative control over the web server and elevated access permissions on the base OS
 - Apps and services do not meet enterprise standards for support, security, documentation & lifecycle management

Research Services & Web Applications:

- Virtualization makes the support line clear:
 - IT provides a 'known good' guest OS image
 - End user handles everything else
 - If end-user breaks the system, IT reverts to prior snapshot

And coming soon:

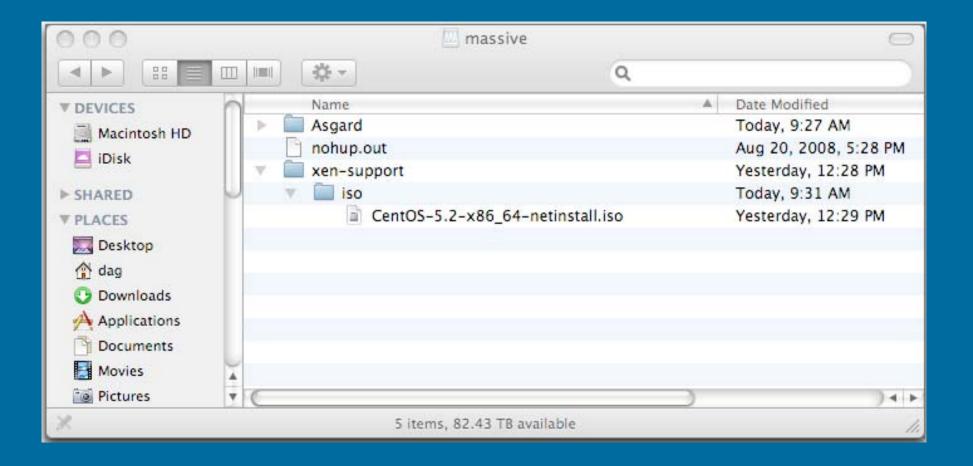
- Virtualized cluster head nodes
- Custom VM sandboxes for all!

Not coming soon:

- Grids & Clusters distributing entire VMs for task execution
 - Technically possible but still behind the "hype vs. practicality" curve

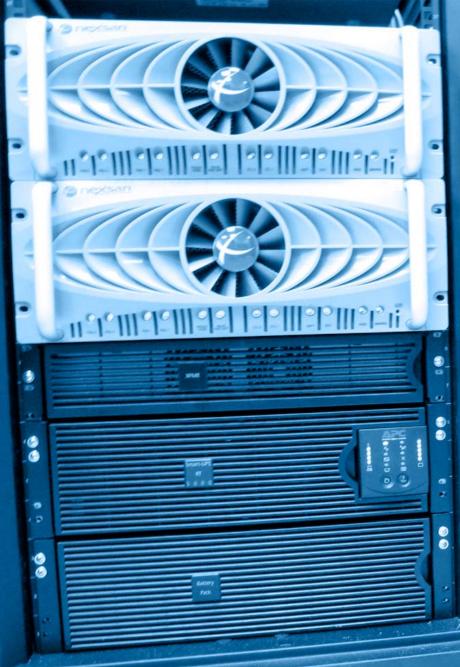
Storage

Storage Trends


Seen in 2008

- First 100TB single-namespace project
- First Petabyte+ storage project
- 4x increase in "technical storage audit" work
- First time witnessing 10+TB catastrophic data loss
- First time witnessing job dismissals due to data loss
- Data Triage discussions are spreading well beyond cost-sensitive industry organizations

82TB Folder. Still satisfying.

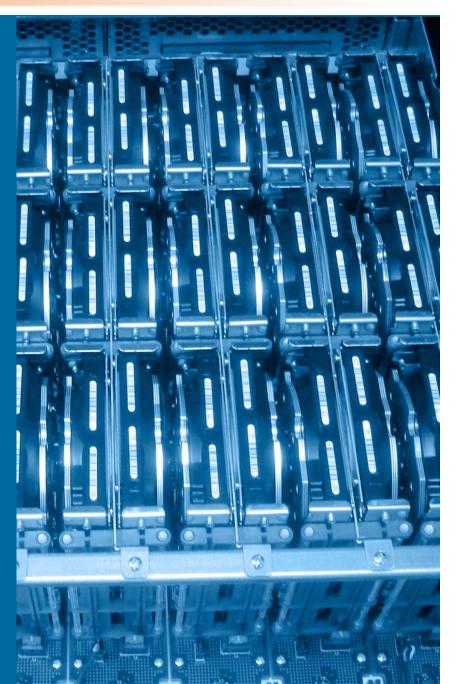


1PB volume - Even more satisfying

000	Terminal — ssh — 84×22				
coil-blue:~ # df -H					
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/sda3	56G	44G	8.6G	84%	T
udev	3.7G	173k	3.7G	1%	/dev
/dev/sda1	104M	15M	84M	15%	/boot
/dev/sdb1	886G	21G	821G	3%	/opt
/install	56G	44G	8.6G	84%	/var/ftp/install
/tftpboot	56G	44G	8.6G	84%	/var/ftp/tftpboot
/dev/ASDC_archive	1.1P	1.4T	1.1P	1%	/ASDC_archive
/dev/SPG_ops	147T	52T	96T	36%	/SPG_ops
/dev/homedir	6.0T	4.6G	6.0T	1%	/homedir
/dev/scf0 _	90T	16T	75T	18%	/SCF
coil-blue:~ # 🛛					

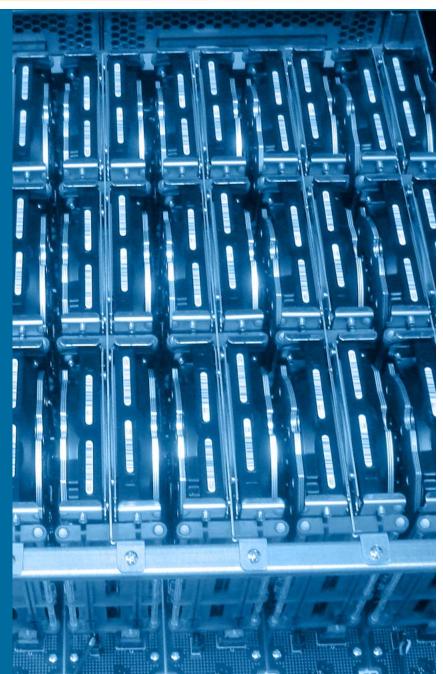
General Observations

- Storage is still "cheap" & getting cheaper
- Operational costs remaining the same
 - But there is hope ...
- Backup & data continuity costs are exploding
 - Still in awe of the backup experts who are still staying afloat in the age of 1TB SATA disks ...


Observations cont.

- End users still have no clue about the true costs of keeping data accessible & available
 - "I can get a terabyte from Costco for \$220!" (Aug 08)
 - "I can get a terabyte from Costco for \$160!" (Oct 08)
 - "I can get a terabyte from Costco for \$124!" (April 09)
- IT needs to be involved in setting expectations and educating on true cost of keeping data online & accessible
- Organizations need forward looking research storage roadmaps

Observations cont.


- The rise of "terabyte instruments" is already having a major disruptive influence on existing environments
 - We see individual labs deploying 100TB+ systems
- I was wrong when I said
 - "petabyte scale storage needs will appear within the decade ..."
 - That time is now for *some* large organizations

Homework Exercise

- Select three vendors
- Build quotes for 100TB singlenamespace NAS solution
- My results:
 - \$160K to \$1.5M range
- Repeat every six months

Capacity Dilemma: Data Triage

Data Triage

- The days of unlimited storage for research are over
- Rate of consumption
 increasing unsustainably
- First saw triage acts in 2007 (industry client)
- Becoming acceptable practice in 2008
- Absolutely a given in 2009 for most projects we see

Why delete data?

 Given full lifecycle cost of data, sometimes repeating the experiment is cheaper than storing the results forever

Data Loss: Lessons learned

The 2008 event:

- Metadata for clustered SAN file system irrevocably corrupted
- 10+ TB of scientific data lost forever
- 3 people "fired"

Vastly simplified root cause:

- Double-disk failure on RAID5 volume holding SAN FS metadata
- Significant operational errors

Data Loss: Lessons learned

Observing this event taught us some lessons:

- We no longer use RAID5 on large filesystems
- Everything on RAID6 or other double-parity system
- Mandatory use of SNMP & email reporting
- Aggressive disk handling: Replace drive on warning
- Background scrub & verify operations
- We reject storage/controller products that are not proactive about disk scrubbing and consistency checking

Thoughts for '09 and beyond

Double-parity or bust!

• RAID5 declines in use as drive counts increase

Data Triage is here to stay; acceptance less of an issue Exponential capacity growth hopefully slowing ...

- Better "in-instrument" data reduction
- Customer trust in vendor & instrument increases
- Explicit data triage within organizations
- "Only" 100-200 TB/year new data generation within the biggest organization we've visited this year*

Software RAID on hosts & arrays gaining popularity

Storage devices running more 3rd party software

- Example: Ocarina reader running inside Isilon nodes
- Example: Ocarina Optimizer on BlueArc chassis

Thoughts for '09 and beyond (cont.)

Backup

- 2008: Became something of a sick joke
- Storage products leave backup products in the dust Almost too far ahead to even attempt to keep up

Starting to see in 2009:

- Complete re-think of backup paradigm
- New expectations, new procedures in an age where "nightly full" may never happen again
- Observed recently:
 - 50TB of Isilon storage for HPC cluster
 - Users told it is scratch space; not backed up at all

Thoughts for '09 and beyond (cont.)

Cloud Storage

- <u>James Hamilton</u> has blogged some interesting numbers:
- Cold storage geographically replicated 4x can be achieved at scale for \$.80 GB/year (and falling)
- Can you match that in your datacenter?
- Some potentially interesting use cases for cloud stores

More on this later ...

Thoughts for '09 and beyond (cont.)

- IT organizations may need to relinquish some control over research data administration
- IT groups are should not be the sole decision maker ...
 - For data triage efforts
 - For aggressive storage optimization efforts
- Science staff must be active in these decisions

Final thoughts on storage for 2009

- Yes the problem is real
 - More and more "terabyte instruments" are coming to market
 - Many of us have peta-scale storage issues today
- "Data Deluge" & "Tsunami" are apt terms
- But:
 - The problem does not feel as scary as it once did
 - Chemistry, reagent cost & human factors are natural bottlenecks
 - Data Triage is an accepted practice, no longer heresy
 - Data-reduction starting to happen within instruments
 - Customers starting to trust instrument vendor software more
 - We see large & small labs dealing successfully with these issues
 - Many ways to tackle IT requirements
 Mix and match solutions to fit local need ...

Becoming Mainstream

Green IT for cynics & Utility Computing

What we have seen in 2008 & 2009:

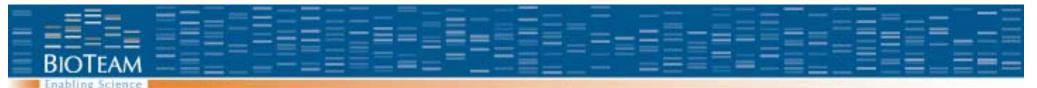
- Production deployment of storage arrays with AutoMAID
- Virtual "colocation facilities"
- High density datacenter redesign efforts
 - Blade deployments driving other facility efficiency wins
- Auto-scaling HPC cluster in big Pharma
 - Multi-thousand core Linux HPC cluster:
 - Server power state(s) harmonized with Platform LSF queue(s)
 - Unattended auto-sizing of cluster to match scientific workflow
 - Real-time savings metrics kept & tracked
 - First time in enterprise environment, old news in some academic and research settings

Hyped beyond all reasonable measure

- Reminds me of dotcom-era WANscale grid computing PR
- Promising more than can be realistically delivered

Marketing aside, still worth pursuing:

- Shrinking physical footprint, reducing power consumption and better management of HVAC is better for the planet
- ... and has tangible results on the bottom line



Where Green IT matters to me:

- Putting more capability into a smaller space
- Putting capability into spaces that previously could not support it
 - Telco closets, underneath wetlab benches, etc.
- Working within power or HVACstarved machine rooms
- Reducing power draw & increasing power use efficiency
- Reducing cooling costs & increasing air handling efficiency

My 2008 "aha!" moment:

- NexSan SATABeast Storage Arrays
 - 48x 1TB SATA disks in 4U enclosure w/ FC interconnects
 - "AutoMAID" options built into management console
- What we had:
 - Three 48 terabyte SATABeasts in two racks
 - APC PDUs with per-outlet monitoring features
- What we saw:
 - 30% reduction in power draw
 - No appreciable impact on cluster throughput

Best 2009 moment:

- Linux HPC cluster on west coast
 - IBM BladeCenter based w/ thousands of CPU cores
 - Chilled water to the racks
 - Thousands of cores managed 24x7 by ~2 FTEs
 - Management interface tuned for VT100 text display
 - Remote cluster admin is *reasonable* with a phone-based SSH client
- Internally developed tools
 - Scripts pull state & event log data from enclosures
 - All provisioning 100% automated
 - Probe scripts catch majority of system errors before they affect cluster jobs or are noticed by end-users
 - Deep integration with Platform LSF queues
 - Automatic 'bclose' when problems detected
 - Impressively "science-aware"

Best 2009 moment:

- HPC cluster continued
 - Automatic workflow-aware server power-on and power-off
 - Email status alerts to management:

- "Hello, I've saved \$80,000 in facility costs this year!"

- Recommendation:
 - Use Green IT for political cover on facility efficiency efforts
- Example:
 - You: "I want to implement automatic server power on off"
 - Network Ops: "Our monitoring infrastructure is based on ping testing of IP addresses, you will flood our system with false downtime alerts if you shut down functional systems!"
 - You: "Green IT."
 - Boss: "Make it happen."

Utility Computing

In 2009 I will try hard never to use the word "cloud" in any serious technical conversation ...

Utility Computing: Setting the Stage

- Speaking of utility computing as it resonates with *infrastructure* people
- My building blocks are servers or groups of systems, not software stacks, developer APIs or commercial products
 - Goal: Replicate, duplicate or relocate complex systems

Lets Be Honest

- This stuff is not rocket science
- Fast becoming accepted and mainstream
- Easy to understand the pros and cons

Your Instance	es				
 Section 1 	0	0 0			
Reservatio	Owner	Instance ID	AMI	State	Public DNS
r-cff40aa6	6099714411	. i-b9a263d0	ami-1d709574	running	ec2-72-44
r-cff40aa6	6099714411	. i-b8a263d1	ami-1d709574	running	ec2-67-202
r-cff40aa6	6099714411	. i-bba263d2	ami-1d709574	running	ec2-67-202
r-cff40aa6	6099714411	. i-baa263d3	ami-1d709574	running	ec2-72-44

/		🖻 🗳 🥻 🗎	Ó
File Name	File Size(KB)	Upload Time	V 🖪
Hedeby	0	06/26/2008 04:48 PM	
PUBLIC_UniCluster-EC2	0	06/16/2008 00:50 AM	
🔁 Univa UD_demo_images	0	06/11/2008 07:32 PM	
SGEdemo_images	0	05/14/2008 11:40 AM	
wednesdaytraining	0	04/15/2008 11:31 PM	
schrodinger	0	04/15/2008 08:24 PM	
🚞 latest-training-ami	0	04/15/2008 00:32 AM	
trainingfiles	0	04/14/2008 01:06 PM	

Utility Computing: Economics

- It is expensive to design for peak demand in-house
- Pay-as-you-go can be compelling for some workflows

Consider: 100 CPU hour research problem
EC2: 10 large servers @ .40/hr for 10 hours
Work done in 10 hours at cost of \$40 USD
EC2: 100 large servers @ .40/hr for 1 hour
Work done in 1 hour at a cost of \$40 USD

Amazon Web Services - Vocabulary Primer

EC2 - "Elastic Compute Cloud"
S3 - "Simple Storage Service"
EBS - "Elastic Block Store"
SQS - "Simple Queue Service"

While I'm being honest ...

My own \$.02:

- Today Amazon AWS *is* the cloud
 - Simple, practical, understandable and usable today by just about anyone
 - Rollout of features and capabilities continues to be impressive
 - Latest example: Elastic MapReduce
 - » Run Hadoop jobs from your browser
 - » Available now: <u>CloudBurst</u> short read mapping
 - VARs are springing up (Cycle Computing, RightScale, etc.)
- Competitors are pretty far behind
 - ... and tend to believe too much of their own marketing materials

BioTeam & Amazon AWS

Why I drank the EC2 Kool-Aid

• Saw it, used it, solved actual customer problems with it

Timeline

- Late 2007
 - Initial experimentation & test cases
- Early 2008
 - By March, every single BioTeam consultant had independently used EC2 to solve a customer facing problem
- Late 2008
 - Commercial and OSS application EC2 integration requests are coming in almost weekly
- 2009
 - Industry pressuring more and more ISVs to support EC2 model
 - Real workflows moving into AWS

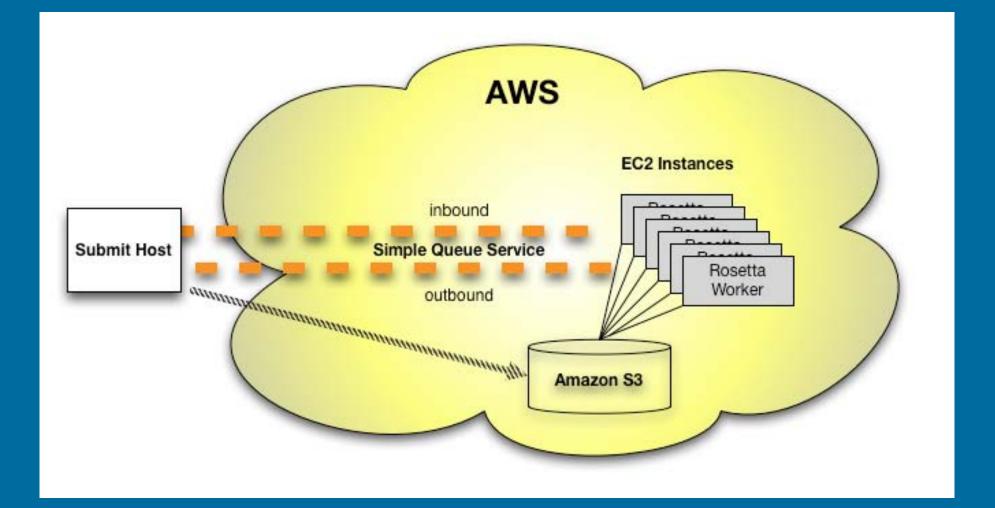
Recent Example: Docking on EC2

BioTeam & Pfizer, using Rosetta++ software (*Baker Lab, UWash*)

- Implemented by Adam Kraut
- Addressed in detail today at the HPC pre-conference workshop

Chosen Workflows:

- Global docking of Antibody-Antigen complex by RosettaAntibody and ZDOCK
 - ~1 hour CPU time per target
- Full-atom refinement of predicted complexes by Rosetta++
 - ~1000 hours CPU time per target



EC2 Project Architecture: Docking

- Borrows heavily from Rightscale Grid Edition
- Inbound, outbound Amazon SQS queues
- Job specification in JSON format
- Data for each work unit pushed into Amazon S3 buckets
- Workers pull from S3, push back when finished
- Job provenance/metadata stored in Amazon SimpleDB
- Independent work units allow dynamic allocation of Worker instances

EC2 Architecture: Docking

EC2 Project Architecture continued: Docking

- Structures are scored in EC2
- ALL results are in S3
 - EC2 <-> S3 bandwidth is free
- Download the top scoring docked complexes
- Launch post-processing EC2 instances to score, rank, filter, and cluster the results in S3
 - "Bringing the compute to the data"

Utility Computing Pet Peeve

My take:

- Amazon, Google & Microsoft probably have better internal operating controls than you do
- All of them are happy to talk as deeply as you like about all issues relating to security
- Do your own due diligence & don't let politics or IT empire issues cloud decision making

Utility Computing Pet Peeve

Don't want to belittle security concerns:

- But whiff of hypocrisy is in the air ...
 - Is your staff *really* concerned or just protecting turf?
 - It is funny to see people demanding security measures that they don't practice internally across their own infrastructure

State of Amazon AWS

New features are being rolled out fast and furious

• Almost monthly these days

But ...

- Still no solution for the data ingestion problem
 - How to push 1TB/day into Amazon S3 or EBS?
- EC2 nodes still poor on disk IO operations
- EBS service can use some enhancements
 - Many readers, one-writer on EBS volumes would be fantastic
- Poor support for latency-sensitive things and workflows that prefer tight network topologies

This matters because:

- Compute power is easy to acquire
- Life science tends to be IO bound
- Life science is currently being buried in data

If ingest problem can be solved ...

- I think there may be petabytes of life science data that would flock to utility storage services
 - Public and private data stores
 - Mass amount of grant funded study data
 - Archive store, HSM target and DR store
- Why?
 - Providers operating at such extreme scale can offer efficiencies unmatchable by traditional IT groups
 - Remember Hamilton's figure: 4x geographically replicated storage for \$.80 GB/year and falling ...
 - Amazon already has a "requestor-pays" download model

If ingest problem can be solved ...

Next-gen sequencing example:

- Instruments in wet-lab
 - Connected to reasonable compute and storage resources
 - Possibly small enough to be lab-local
- Data analysis & reduction done onsite
- Derived data (basecalls, etc.) kept onsite
- Run data *ingested* into utility storage service
 - Cheap, scalable long-term storage of scientific data
 - Probably a one-way trip

Next-Gen & Utility storage

What this would mean:

- Primary analysis onsite; data moved into remote utility storage service after passing QC tests
- Data would rarely (if ever) move back
- Need to reprocess or rerun?
 - Spin up "cloud" servers and re-analyze in situ
 - Terabyte data transit not required

Summary:

- Lifesci data; 1-way transit into the cloud
- Archive store or public/private repository
- Any re-study or reanalysis primarily done in situ
- Downside: replicating pipelines & workflows remotely

Cloud Sobriety

McKinsey presentation "Clearing the Air on Cloud Computing" is a must-read

- Tries to deflate the hype a bit
- James Hamilton has a nice reaction:
 - http://perspectives.mvdirona.com/

Both conclude:

- IT staff needs to understand "the cloud"
- Critical to quantify your own internal costs
- Do your own due diligence

Worth Watching

Scale-out best practices & Federated storage

"Trickle-Down" Scale-out Tips

- Google, Microsoft & Amazon all operate at extreme scales that few of us come close to matching
 - Datacenter scaling & efficiency measures taken by these companies are tightly held trade secrets for competitive reasons
- This is starting to change and we will all benefit
 - Both from "trickle-down" best practices & hard data
 - And with vendor products improved to meet these demanding customers

"Trickle-Down" Scale-out Tips

April 2009:

- Google Datacenter Efficiency Summit
 - Presentations now online
- Google <u>video</u> on Youtube showing '04-era 780W/sq ft containerized datacenter
- If Google was doing this stuff in 2004, what are they up to now?

And from server vendors:

- Dell warranting servers at 95F input temperature
- Rackable Systems warranting it's C2 rack at 104F inlet temperature

"Trickle-Down" Scale-out Tips

James Hamilton's blog is required reading:

- <u>http://perspectives.mvdirona.com/</u>
- Former MS employee, now Amazon VP & Distinguished Engineer on AWS team
- Focused on infrastructure efficiency, reliability, and scaling
- Well written, really useful information backed by real data

Moving forward

- Realize significant benefit from best practices trickling out of these sites
- Also benefit from vendor products engineered to satisfy the extreme scale folks

And finally ...

Ongoing research in 2009

Federated Storage Experiments in 2009

- Storage "islands" have always been an issue in our field
 - Made worse by lab-local large storage and (*future*) cloud storage
 - Bad for scientists (lots of rsync & wasted productivity)
 - Bad for IT (duplicated content multiplies backup & operational hassles)

Federated Storage Experiments in 2009

- Interesting ongoing efforts regarding global namespaces and federated data stores
- Got into this via Jacob Farmer
- Using technology from General Atomics
 - "Nirvana" Storage Resource Broker
 - Has some interesting capabilities for life science, especially in collaborative environments
- Can't speak much yet; pilots ongoing
- Look for more talks/papers on this in 2009 ...

Wrapping things up

Once hyped, now mainstream:

- Virtualization in research IT
- Storage Deluge Problems

Currently hyped, but worthwhile:

- Green IT
- Utility Computing

Future Focus:

- *"Trickle-down" Best Practices*
- Federated Storage

End;

- Thanks!
- BioTeam people will be at Booth #113
- Presentation slides will appear here:
 - http://blog.bioteam.net
- Comments/feedback:
 - "<u>chris@bioteam.net</u>"